【題目】已知圓:,圓與圓關(guān)于直線:對(duì)稱.
(1)求圓的方程;
(2)過(guò)直線上的點(diǎn)分別作斜率為,4的兩條直線,,求使得被圓截得的弦長(zhǎng)與被圓截得的弦長(zhǎng)相等時(shí)點(diǎn)的坐標(biāo).
【答案】(1) (2)
【解析】
(1)設(shè),先由圓與圓關(guān)于直線對(duì)稱,求出,進(jìn)而可求出結(jié)果;
(2)先設(shè),得到的方程為,的方程為,根據(jù)弦長(zhǎng)相等,結(jié)合點(diǎn)到直線距離公式,得到,求解,再根據(jù)直線與圓的位置關(guān)系,即可得出結(jié)果.
(1)設(shè),因?yàn)閳A與圓關(guān)于直線:對(duì)稱,,
則直線與直線垂直,中點(diǎn)在直線上,得,
解得,所以圓:.
(2)設(shè),的方程為,即;
的方程為,即.
因?yàn)?/span>被圓截得的弦長(zhǎng)與被圓截得的弦長(zhǎng)相等,且兩圓半徑相等,
所以到的距離與到的距離相等,即,
所以或.
由題意,到直線的距離,
所以不滿足題意,舍去,
故,點(diǎn)坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證:;
(2)討論函數(shù)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過(guò)點(diǎn),斜率為1的直線與拋物線交于點(diǎn),,且.
(1)求拋物線的方程;
(2)過(guò)點(diǎn)作直線交拋物線于不同于的兩點(diǎn)、,若直線,分別交直線于兩點(diǎn),求取最小值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為橢圓的左頂點(diǎn),過(guò)的直線交拋物線于、兩點(diǎn),是的中點(diǎn).
(1)求證:點(diǎn)的橫坐標(biāo)是定值,并求出該定值;
(2)若直線過(guò)點(diǎn),且傾斜角和直線的傾斜角互補(bǔ),交橢圓于、兩點(diǎn),求的值,使得的面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線與圓:有公共點(diǎn),且圓在點(diǎn)處的切線與雙曲線的一條漸近線平行,則該雙曲線的實(shí)軸長(zhǎng)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】唐代詩(shī)人李欣的是古從軍行開(kāi)頭兩句說(shuō)“百日登山望烽火,黃昏飲馬傍交河”詩(shī)中隱含著一個(gè)有缺的數(shù)學(xué)故事“將軍飲馬”的問(wèn)題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回到軍營(yíng),怎樣走才能使總路程最短?在平面直角坐標(biāo)系中,設(shè)軍營(yíng)所在區(qū)域?yàn)?/span>,若將軍從出發(fā),河岸線所在直線方程,并假定將軍只要到達(dá)軍營(yíng)所在區(qū)域即回到軍營(yíng),則“將軍飲馬”的最短總路程為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為10000,12000,15000,其成本構(gòu)成如下圖所示,則關(guān)于這三家企業(yè)下列說(shuō)法錯(cuò)誤的是( )
A.成本最大的企業(yè)是丙企業(yè)B.費(fèi)用支出最高的企業(yè)是丙企業(yè)
C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)三角形數(shù)表按如下方式構(gòu)成(如圖:其中項(xiàng)數(shù)):第一行是以4為首項(xiàng),4為公差的等差數(shù)列,從第二行起,每一個(gè)數(shù)是其肩上兩個(gè)數(shù)的和,例如:;為數(shù)表中第行的第個(gè)數(shù).
…
…
…
……
(1)求第2行和第3行的通項(xiàng)公式和;
(2)證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列,并求關(guān)于的表達(dá)式;
(3)若,,試求一個(gè)等比數(shù)列,使得,且對(duì)于任意的,均存在實(shí)數(shù),當(dāng)時(shí),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確命題的序號(hào)是( 。
①函數(shù)f(x)在定義域R內(nèi)可導(dǎo),“f′(1)=0”是“函數(shù)f(x)在x=1處取極值”的充分不必要條件;
②函數(shù)f(x)=x3ax在[1,2]上單調(diào)遞增,則a≥﹣4
③在一次射箭比賽中,甲、乙兩名射箭手各射箭一次.設(shè)命題p:“甲射中十環(huán)”,命題q:“乙射中十環(huán)”,則命題“至少有一名射箭手沒(méi)有射中十環(huán)”可表示為(¬p)∨(¬q);
④若橢圓左、右焦點(diǎn)分別為F1,F2,垂直于x軸的直線交橢圓于A,B兩點(diǎn),當(dāng)直線過(guò)右焦點(diǎn)時(shí),△ABF1的周長(zhǎng)取最大值
A.①③④B.②③④C.②③D.①④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com