【題目】已知兩定點,滿足條件的點P的軌跡是曲線E,直線y=kx-1與曲線E交于A,B兩點,
(1)求k的取值范圍;
(2)如果,且曲線E上存在點C,使,求m的值和的面積S。
【答案】(1);(2);(3),面積為.
【解析】
試題(1)由雙曲線的定義可知,曲線是以為焦點的雙曲線的左支,,所以方程為;(2)由于直線和雙曲線相交于左支,且有兩個交點,故聯(lián)立直線的方程和雙曲線的方程,消去后得到關(guān)于的一元二次方程的判別式大于零,且韋達定理兩根的和小于零,兩根的積大于零,由此列不等式組,求解的的取值范圍;(3)利用弦長公式計算得直線斜率為.由題設(shè)向量關(guān)系,得到,代入雙曲線方程,求得,利用面積公式求得面積為.
試題解析:
(1)由雙曲線的定義可知,曲線是以為焦點的雙曲線的左支,且,易知
故曲線的方程為
(2)設(shè),由題意建立方程組
消去,得
又已知直線與雙曲線左支交于兩點,有解得
(3)
依題意得
整理后得
∴或
但∴
故直線的方程為
設(shè),由已知,得
∴
又
∴點
將點的坐標(biāo)代入曲線的方程,得得,
但當(dāng)時,所得的點在雙曲線的右支上,不合題意
∴,點的坐標(biāo)為 到的距離為
∴的面積
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某一段海底光纜出現(xiàn)故障,需派人潛到海底進行維修,現(xiàn)在一共有甲、乙、丙三個人可以潛水維修,由于潛水時間有限,每次只能派出一個人,且每個人只派一次,如果前一個人在一定時間內(nèi)能修好則維修結(jié)束,不能修好則換下一個人.已知甲、乙、丙在一定時間內(nèi)能修好光纜的概率分別為,且各人能否修好相互獨立.
(1)若按照丙、乙、甲的順序派出維修,設(shè)所需派出人員的數(shù)目為X,求X的分布列和數(shù)學(xué)期望;
(2)假設(shè)三人被派出的不同順序是等可能出現(xiàn)的,現(xiàn)已知丙在乙的下一個被派出,求光纜被丙修好的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點的坐標(biāo)為,圓的方程為,動點在圓上運動,點為延長線上一點,且.
(1)求點的軌跡方程.
(2)過點作圓的兩條切線, ,分別與圓相切于點, ,求直線的方程,并判斷直線與點所在曲線的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】焦點在x軸上的橢圓C:經(jīng)過點,橢圓C的離心率為.,是橢圓的左、右焦點,P為橢圓上任意點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點M為的中點(O為坐標(biāo)原點),過M且平行于OP的直線l交橢圓C于A,B兩點,是否存在實數(shù),使得;若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)若回歸直線方程,其中;試預(yù)測當(dāng)單價為10元時的銷量;
(2)預(yù)計在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是5元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入-成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按元/度收費,超過200度但不超過400度的部分按元/度收費,超過400度的部分按1.0元/度收費.
(Ⅰ)求某戶居民用電費用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;
(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的占,求, 的值;
(Ⅲ)在滿足(Ⅱ)的條件下,若以這100戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點代替,記為該居民用戶1月份的用電費用,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)將要舉行校園歌手大賽,現(xiàn)有4男3女參加,需要安排他們的出場順序.(結(jié)果用數(shù)字作答)
(1)如果3個女生都不相鄰,那么有多少種不同的出場順序?
(2)如果3位女生都相鄰,且男生甲不在第一個出場,那么有多少種不同的出場順序?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只蒼蠅和只蜘蛛被放置在方格表的一些交點處.一次操作包括以下步驟:首先,蒼蠅移動到相鄰的交點處或者原地不動,然后,每只蜘蛛移動到相鄰交點處或者原地不動(同一交點可以同時停留多只蜘蛛).假設(shè)每只蜘蛛和蒼蠅總是知道其他蜘蛛和蒼蠅的位置.
(1)找出最小的正整數(shù),使得在有限次操作內(nèi),蜘蛛能夠抓住蒼蠅,且與其初始位置無關(guān);
(2)在的空間三維方格中,(1)中的結(jié)論又是怎樣?
(注)題中相鄰是指一個交點僅有一個坐標(biāo)與另一個交點的同一坐標(biāo)不同,且差值為1;題中抓住是指蜘蛛和蒼蠅位于同一交點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,.,分別是,的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)在圖中作出點在底面的正投影,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com