設(shè)直線與雙曲線交于A、B,且以AB為直徑的圓過原點(diǎn),求點(diǎn)的軌跡方程.
2y2-x2=1(x2<3).

試題分析:將直線與雙曲線方程聯(lián)立,消去y(或x),得到關(guān)于x的一元二次方程。由題意知方程有兩根,故二次項(xiàng)系數(shù)不為0,且判別式大于0,解出a的范圍,即所求軌跡方程的定義域。根據(jù)韋達(dá)定理得到兩根之和,兩根之積(整體計(jì)算比計(jì)算出兩個(gè)根要簡單)。根據(jù)且以AB為直徑的圓過原點(diǎn),可得直線AO和直線BO垂直,可利用斜率之積等于列式計(jì)算,但這種情況需對(duì)斜率存在與否進(jìn)行討論。為了省去討論的麻煩可用向量問題來解決。詳見解析。
試題解析: 解:聯(lián)立直線與雙曲線方程得,消去y得:(a2-3)x2+2abx+b2+1=0.
∵直線與雙曲線交于A、B兩點(diǎn),∴⇒a2<3.
設(shè)A(x1,y1),B(x2,y2)則x1+x2,x1·x2.
得x1x2+y1y2=0,又y1·y2=(ax1+b)(ax2+b)=a2x1x2+ab(x1+x2)+b2
∴有+a2·+b2=0.
化簡得:a2-2b2=-1.故P點(diǎn)(a,b)的軌跡方程為2y2-x2=1(x2<3).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:,定點(diǎn)M(0,5),直線軸交于點(diǎn)F,O為原點(diǎn),若以O(shè)M為直徑的圓恰好過與拋物線C的交點(diǎn).
(1)求拋物線C的方程;
(2)過點(diǎn)M作直線交拋物線C于A,B兩點(diǎn),連AF,BF延長交拋物線分別于,求證: 拋物線C分別過兩點(diǎn)的切線的交點(diǎn)Q在一條定直線上運(yùn)動(dòng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知坐標(biāo)平面內(nèi),.動(dòng)點(diǎn)P與外切與內(nèi)切.
(1)求動(dòng)圓心P的軌跡的方程;
(2)若過D點(diǎn)的斜率為2的直線與曲線交于兩點(diǎn)A、B,求AB的長;
(3)過D的動(dòng)直線與曲線交于A、B兩點(diǎn),線段中點(diǎn)為M,求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線與直線相交于A、B 兩點(diǎn).
(1)求證:
(2)當(dāng)的面積等于時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓 的離心率為,點(diǎn),0),(0,)原點(diǎn)到直線的距離為。

(1) 求橢圓的方程;
(2) 設(shè)點(diǎn)為(,0),點(diǎn)在橢圓上(與均不重合),點(diǎn)在直線上,若直線的方程為,且,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的方程為,雙曲線的兩條漸近線為、.過橢圓的右焦點(diǎn)作直線,使,又交于點(diǎn),設(shè)與橢圓的兩個(gè)交點(diǎn)由上至下依次為、.

(1)若的夾角為,且雙曲線的焦距為,求橢圓的方程;
(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,直線與以原點(diǎn)為圓心,以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)拋物線與橢圓有公共焦點(diǎn),設(shè)軸交于點(diǎn),不同的兩點(diǎn) 上(、不重合),且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為的橢圓過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)不過原點(diǎn)O的直線與該橢圓交于P,Q兩點(diǎn),滿足直線的斜率依次成等比數(shù)列,
面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面上動(dòng)點(diǎn)滿足,,則一定有(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案