精英家教網 > 高中數學 > 題目詳情

【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,E為BD的中點,G為PD的中點,△DAB≌△DCB,EA=EB=AB=1,PA= ,連接CE并延長交AD于F

(1)求證:AD⊥平面CFG;
(2)求平面BCP與平面DCP的夾角的余弦值.

【答案】
(1)解:∵在△DAB中,E為BD的中點,EA=EB=AB=1,

∴AE= BD,可得∠BAD= ,且∠ABE=∠AEB=

∵△DAB≌△DCB,∴△EAB≌△ECB,從而得到∠FED=∠BEC=∠AEB=

∴∠EDA=∠EAD= ,可得EF⊥AD,AF=FD

又∵△PAD中,PG=GD,∴FG是△PAD是的中位線,可得FG∥PA

∵PA⊥平面ABCD,∴FG⊥平面ABCD,

∵AD平面ABCD,∴FG⊥AD

又∵EF、FG是平面CFG內的相交直線,∴AD⊥平面CFG


(2)解:以點A為原點,AB、AD、PA分別為x軸、y軸、z軸建立如圖直角坐標系,可得

A(0,0,0),B(1,0,0),C( , ,0),D(0, ,0),P(0,0,

=( , ,0), =(﹣ ,﹣ ), =(﹣ , ,0)

設平面BCP的法向量 =(1,y1,z1),則

解得y1=﹣ ,z1= ,可得 =(1,﹣ , ),

設平面DCP的法向量 =(1,y2,z2),則

解得y2= ,z2=2,可得 =(1, ,2),

∴cos< >= = =

因此平面BCP與平面DCP的夾角的余弦值等于﹣cos< , >=﹣


【解析】(1)利用直角三角形的判定得到∠BAD= ,且∠ABE=∠AEB= .由△DAB≌△DCB得到△EAB≌△ECB,從而得到∠FED=∠FEA= ,所以EF⊥AD且AF=FD,結合題意得到FG是△PAD是的中位線,可得FG∥PA,根據PA⊥平面ABCD得FG⊥平面ABCD,得到FG⊥AD,最后根據線面垂直的判定定理證出AD⊥平面CFG;(2)以點A為原點,AB、AD、PA分別為x軸、y軸、z軸建立如圖直角坐標系,得到A、B、C、D、P的坐標,從而得到 、 、 的坐標,利用垂直向量數量積為零的方法建立方程組,解出 =(1,﹣ , )和 =(1, ,2)分別為平面BCP、平面DCP的法向量,利用空間向量的夾角公式算出 、 夾角的余弦,即可得到平面BCP與平面DCP的夾角的余弦值.
【考點精析】通過靈活運用直線與平面垂直的判定,掌握一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現了“直線與平面垂直”與“直線與直線垂直”互相轉化的數學思想即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名高三學生平均每天課外體育鍛煉時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)

平均每天鍛煉的時間/分鐘

總人數

20

36

44

50

40

10

將學生日均課外體育鍛煉時間在的學生評價為“課外體育達標”.

(1)請根據上述表格中的統(tǒng)計數據填寫下面的列聯(lián)表;

課外體育不達標

課外體育達標

合計

20

110

合計

(2)通過計算判斷是否能在犯錯誤的概率不超過的前提下認為“課外體育達標”性別有關?

參考公式,其中

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是某港口水的深度(單位:)關于時間的函數,其中.下表是該港口某一天從時至時記錄的時間與水深的關系:

t

0

3

6

9

12

15

18

21

24

y

5.0

7.5

5.0

2.5

5.0

7.5

5.0

2.5

5.0

經長期觀察,函數的圖像可以近似看成函數的圖像.最能近似表示表中數據間對應關系的函數是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】動圓M與定圓C:x2+y2+4x=0相外切,且與直線l:x-2=0相切,則動圓M的圓心的軌跡方程為(  )

A. y2-12x+12=0 B. y2+12x-12=0

C. y2+8x=0 D. y2-8x=0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中,若,成等差數列,且三個內角,也成等差數列,則的形狀為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為 (其中為參數).現以坐標原點為極點, 軸的非負半軸為極軸建立極坐標標系,曲線的極坐標方程為.

(1)寫出直線的普通方程和曲線的直角坐標方程;(2)求直線被曲線截得的線段的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于不重合的兩個平面,給定下列條件:

①存在平面,使得、都垂直于;

②存在平面,使得都平行于;

內有不共線的三點到的距離相等;

④存在異面直線,使得,,

其中,可以判定平行的條件有( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,以O為圓心的圓與直線相切.

(1)求圓O的方程.

(2)直線與圓O交于A,B兩點,在圓O上是否存在一點M,使得四邊形為菱形?若存在,求出此時直線l的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系,已知直線的參數方程為(為參數),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.

(1)求直線l的普通方程和曲線的直角坐標方程;

(2)已知點的極坐標為,的值.

查看答案和解析>>

同步練習冊答案