命題:“已知a、b、c、d是實數(shù),若a=b,c=d,則a+ c=b+ d”.寫出該命題的逆命題、否命題、逆否命題,并判斷這些命題的真假.

解析:逆命題:“已知a、b、c、d為實數(shù),若a+ c=b+ d,則a=b, c=d(即a與b、c與d均相等).”?

否命題:“已知a、b、c、d是實數(shù),若a與b、c與d不都相等,則a+ c≠b+ d.”

逆否命題:“已知a、b、c、d是實數(shù),若a+ c≠b+ d,則a與b、c與d不都相等.”

原命題為真命題.?

若令a=3,b=2,c=1,d=2,則a+ c=1+3=4,b+ d=2+2=4,即a+ c=b+ d,但a≠b, c≠d,所以逆命題為假命題.

根據(jù)原命題與逆否命題、逆命題與否命題等價的性質(zhì),所以逆否命題為真命題、否命題為假命題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①已知a,b,m都是正數(shù),且
a+m
b+m
a
b
,則a<b;
②若函數(shù)f(x)=lg(ax+1)的定義域是{x|x<1},則a<-1;
③已知x∈(0,π),則y=sinx+
2
sinx
的最小值為2
2

④函數(shù)f(x)是R上以5為周期的可導(dǎo)偶函數(shù),則曲線y=f(x)在x=5處的切線斜率為0
其中正確命題的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①已知a,b,m都是正數(shù),且
a+m
b+m
a
b
,則a<b;
②已知a、b、c成等比數(shù)列,a、x、b成等差數(shù)列,b、y、c也成等差數(shù)列,則
a
x
+
c
y
的值等于2;
③函數(shù)y=tanx的圖象關(guān)于點(kπ,0),(k∈Z)對稱;
④關(guān)于x的不等式|x+1|+|x-3|≥m的解集為R,則m≤4;
其中為真命題的序號是
①②③④
①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題:“已知a,b,c,d∈R,若a=b,c=d,則a+c=b+d”的逆否命題是:
已知a,b,c,d∈R,若a+c≠b+d,則a≠b或c≠d
已知a,b,c,d∈R,若a+c≠b+d,則a≠b或c≠d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列四個命題中
①已知A、B、C、D是空間的任意四點,則
AB
+
BC
+
CD
+
DA
=
0

②若{
a
,
b
c
}為空間的一組基底,則{
a
+
b
b
+
c
,
c
+
a
}也構(gòu)成空間的一組基底.
|(
a
b
)|•
c
=|
a
|•|
b
|•|
c
|

④對于空間的任意一點O和不共線的三點A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(其中x,y,z∈R),則P、A、B、C四點共面.
其中正確的個數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•浦東新區(qū)一模)(1)A、B、C為斜三角形ABC的三個內(nèi)角,tgA+tgB+1=tgAtgB.求角C;
(2)命題:已知A,B,C∈(0,π),若tgA+tgB+tgC=tgAtgBtgC,則A+B+C=π.判斷該命題的真假并說明理由.
(說明:試卷中的“tgA”在試點教材中記為“tanA”)

查看答案和解析>>

同步練習(xí)冊答案