【題目】若在兩個成語中,一個成語的末字恰是另一成語的首字,則稱這兩個成語有頂真關(guān)系,現(xiàn)從分別貼有成語人定勝天、爭先恐后一馬當(dāng)先、天馬行空先發(fā)制人5張大小形狀完全相同卡片中,任意抽取2張,則這2張卡片上的成語有頂真關(guān)系的概率為(  )

A.B.C.D.

【答案】C

【解析】

從這5張卡片中隨機抽取2張,共有10種不同的情況,利用列舉法求出其中有頂真關(guān)系的共有3種情況,由此能求出這2張卡片上的成語有頂真關(guān)系的概率.

從這5張卡片中隨機抽取2張,共有=10種不同的情況,

其中有頂真關(guān)系的為:(人定勝天,天馬行空),(一馬當(dāng)先,先發(fā)制人),(先發(fā)勝人,人定勝天),共有3種情況,

2張卡片上的成語有頂真關(guān)系的概率為

故選:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若雙曲線與雙曲線有共同的漸近線,且過點.

1)求雙曲線的方程;

2)過的直線與雙曲線的左支交于、兩點,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系,外的點軸的右側(cè)運動,到圓上的點的最小距離等于它到軸的距離,的軌跡為.

1)求的方程;

2)過點的直線交,兩點,為直徑的圓與平行于軸的直線相切于點,線段于點,證明:的面積是的面積的四倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),給出下列命題,其中正確命題的個數(shù)為

①當(dāng)時,上單調(diào)遞增;

②當(dāng)時,存在不相等的兩個實數(shù),使;

③當(dāng)時,3個零點.

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】棱長為2的正方體ABCDA1B1C1D1中,E,F分別是DD1,DB的中點,G在棱CD上,且CGCD

1)證明:EFB1C;

2)求cos,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,離心率為上的一個動點.當(dāng)的上頂點時,的面積為

1)求的方程;

2)設(shè)斜率存在的直線的另一個交點為.若存在點,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由中央電視臺綜合頻道()和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青春電視公開課。每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機調(diào)查了、兩個地區(qū)的100名觀眾,得到如下的列聯(lián)表

非常滿意

滿意

合計

30

合計

已知在被調(diào)查的100名觀眾中隨機抽取1名,該觀眾是地區(qū)當(dāng)中“非常滿意”的觀眾的概率為.

(Ⅰ)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進(jìn)行問卷調(diào)查,則應(yīng)抽取“滿意”的、地區(qū)的人數(shù)各是多少

(Ⅱ)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系;

(Ⅲ)若以抽樣調(diào)查的頻率為概率,從地區(qū)隨機抽取3人,設(shè)抽到的觀眾“非常滿意”的人數(shù)為的分布列和期望.

附:參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2002年在北京召開的國際數(shù)學(xué)家大會的會標(biāo)是以我國古代數(shù)學(xué)家的弦圖為基礎(chǔ)設(shè)計的.弦圖是由四個全等的直角三角形與一個小正方形拼成的一個大正方形(如圖).設(shè)其中直角三角形中較小的銳角為,且,如果在弦圖內(nèi)隨機拋擲1000米黑芝麻(大小差別忽略不計),則落在小正方形內(nèi)的黑芝麻數(shù)大約為( )

A. 350B. 300C. 250D. 200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平行四邊形中,,,點的中點,點的中點,分別沿折起,使得平面平面(點在平面的同側(cè)),連接,如圖2所示.

(1)求證:;

(2)當(dāng),且平面平面時,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案