【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程與的直角坐標(biāo)方程;

(2)判斷曲線是否相交,若相交,求出相交弦長(zhǎng).

【答案】(1)曲線的普通方程為,曲線的直角坐標(biāo)方程為;(2).

【解析】試題分析:(1)利用消參法消去參數(shù)即可得曲線的普通方程,根據(jù)即可得的直角坐標(biāo)方程;(2)根據(jù)圓心到直線的距離小于半徑可得直線與圓相交,根據(jù)相交弦長(zhǎng)為可得結(jié)果.

試題解析:(1)由題知,將曲線的參數(shù)方程消去參數(shù),

可得曲線的普通方程為.

,

.

,代入上式,

,

.

故曲線的直角坐標(biāo)方程為.

(2)由(1)知,圓的圓心為,半徑,

因?yàn)閳A心到直線的距離

所以曲線相交,

所以相交弦長(zhǎng)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為,,點(diǎn)在橢圓上,且面積的最大值為,周長(zhǎng)為6.

1)求橢圓的方程,并求橢圓的離心率;

2)已知直線與橢圓交于不同的兩點(diǎn),若在軸上存在點(diǎn),使得中點(diǎn)的連線與直線垂直,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知在極坐標(biāo)系中,點(diǎn),,是線段的中點(diǎn),以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位,建立平面直角坐標(biāo)系,曲線的參數(shù)方程是為參數(shù)).

(1)求點(diǎn)的直角坐標(biāo),并求曲線的普通方程;

(2)設(shè)直線過(guò)點(diǎn)交曲線兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市統(tǒng)計(jì)局就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖,每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在.

(1)求居民收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù)、平均數(shù)及其眾數(shù);

(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,從這10000人中用分層抽樣方法抽出100人作進(jìn)一步分析,則應(yīng)月收入為的人中抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)gx)=ax2+ca,cR),g1)=1且不等式gxx2x+1對(duì)一切實(shí)數(shù)x恒成立.

)求函數(shù)gx)的解析式;

)在()的條件下,設(shè)函數(shù)hx)=2gx)﹣2,關(guān)于x的不等式hx1+4hmh)﹣4m2hx),在x[,+∞)有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)fx=2x2-5x-6有兩個(gè)零點(diǎn)x1,x2x1x2),則( .

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,,點(diǎn)的中點(diǎn)

(1)求證:平面;

(2)若平面 平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在上的偶函數(shù),且滿足,若當(dāng)時(shí),,則函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)為( )

A. 2017 B. 2018 C. 4034 D. 4036

查看答案和解析>>

同步練習(xí)冊(cè)答案