【題目】已知橢圓上存在關于直線對稱的相異兩點,則實數(shù)的取值范圍是____

【答案】

【解析】

根據(jù)對稱性可知線段AB被直線y=x+m垂直平分,且AB的中點M(x0,y0)在直線y=x+m上,故可設直線AB的方程為y=﹣x+b,聯(lián)立方程整理可得5x2﹣8bx+4b2﹣4=0,結合方程的根與系數(shù)關系可求中點M,由△=64b2﹣80(b2﹣1)>0可求b的范圍,由中點M在直線yx+m可得b,m的關系,從而可求m的范圍

設橢圓上存在關于直線y=x+m對稱的兩點為A(x1,y1),B(x2,y2

根據(jù)對稱性可知線段AB被直線y=x+m垂直平分,且AB的中點M(x0,y0)在直線y=x+m上,且KAB=﹣1

故可設直線AB的方程為y=﹣x+b

聯(lián)立方程整理可得5x2﹣8bx+4b2﹣4=0

,y1+y2=2b﹣(x1+x2)=

△=64b2﹣80(b2﹣1)>0可得

,=

AB的中點M()在直線y=x+m上

,

故答案為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點.
(Ⅰ)證明:CE∥平面PAB;
(Ⅱ)求直線CE與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,),且兩個焦點的坐標依次為(1,0)和(1,0).

(Ⅰ)求橢圓的標準方程;

(Ⅱ)是橢圓上的兩個動點,為坐標原點,直線的斜率為,直線的斜率為,求當為何值時,直線與以原點為圓心的定圓相切,并寫出此定圓的標準方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn , 等比數(shù)列{bn}的前n項和為Tn , a1=﹣1,b1=1,a2+b2=2.
(Ⅰ)若a3+b3=5,求{bn}的通項公式;
(Ⅱ)若T3=21,求S3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,設中心在坐標原點,焦點在軸上的橢圓的左、右焦點分別為,右準線軸的交點為,.

(1)已知點在橢圓上,求實數(shù)的值;

(2)已知定點

① 若橢圓上存在點,使得,求橢圓的離心率的取值范圍;

② 如圖,當時,記為橢圓上的動點,直線分別與橢圓交于另一點,若,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,b>0,a3+b3=2,證明:
(Ⅰ)(a+b)(a5+b5)≥4;
(Ⅱ)a+b≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為(  )
A.16
B.14
C.12
D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M過C(1,-1),D(-1,1)兩點,且圓心M在x+y-2=0上.

(1)求圓M的方程;

(2)設點P是直線3x+4y+8=0上的動點,PA,PB是圓M的兩條切線,A,B為切點,求四邊形PAMB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓和雙曲線有共同焦點,是它們的一個交點,,記橢圓和雙曲線的離心率分別,則的最小值是(

A. B. C. D.

查看答案和解析>>

同步練習冊答案