精英家教網 > 高中數學 > 題目詳情

【題目】△ABC的內角A、B、C所對的邊分別為a,b,c. (Ⅰ)若a,b,c成等差數列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數列,且c=2a,求cosB的值.

【答案】解:(Ⅰ)∵a,b,c成等差數列, ∴a+c=2b,
由正弦定理得:sinA+sinC=2sinB,
∵sinB=sin[π﹣(A+C)]=sin(A+C),
則sinA+sinC=2sin(A+C);
(Ⅱ)∵a,b,c成等比數列,
∴b2=ac,
將c=2a代入得:b2=2a2 , 即b= a,
∴由余弦定理得:cosB= = =
【解析】(Ⅰ)由a,b,c成等差數列,利用等差數列的性質得到a+c=2b,再利用正弦定理及誘導公式變形即可得證;(Ⅱ)由a,b,c成等比數列,利用等比數列的性質列出關系式,將c=2a代入表示出b,利用余弦定理表示出cosB,將三邊長代入即可求出cosB的值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在△ABC中,A、B、C的對邊分別是a,b,c,且bcosB是acosC,ccosA的等差中項,則角B=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】右邊程序框圖的算法思路源于我國古代數學名著《九章算術》中的“更相減損術”,執(zhí)行該程序框圖,若輸入的a,b分別為14,18,則輸出的a等于

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAAB,PABC,ABBC,PAABBC=2,D為線段AC的中點,E為線段PC上一點.

(1)求證:PABD;

(2)求證:平面BDE平面PAC;

(3)PA平面BDE時,求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在菱形中,⊥平面,且四邊形是平行四邊形.

(1)求證:;

(2)當點的什么位置時,使得∥平面,并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設△ABC的內角A,B,C所對的邊分別為a,b,c且acosC﹣ =b.
(1)求角A的大小;
(2)若a=1,求△ABC的周長的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】A,B兩名同學在5次數學考試中的成績統計如下面的莖葉圖所示,若A,B兩人的平均成績分別是xA , xB , 觀察莖葉圖,下列結論正確的是(
A.xA<xB , B比A成績穩(wěn)定
B.xA>xB , B比A成績穩(wěn)定
C.xA<xB , A比B成績穩(wěn)定
D.xA>xB , A比B成績穩(wěn)定

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數=().

(Ⅰ)當=-3時,求的極值;

(Ⅱ)當>1時,0,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐E﹣ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE, ,F為線段DE上的一點.

(1)求證:平面AED⊥平面ABCD;
(2)若二面角E﹣BC﹣F與二面角F﹣BC﹣D的大小相等,求DF的長.

查看答案和解析>>

同步練習冊答案