【題目】有人發(fā)現(xiàn),多看電視容易使人變冷漠,如表是一個調(diào)查機構(gòu)對此現(xiàn)象的調(diào)查結(jié)果:

冷漠

不冷漠

總計

多看電視

68

42

110

少看電視

20

38

58

總計

88

80

168

P(K2≥k)

0.025

0.010

0.005

0.001

k

5.024

6.635

7.879

10.828

K2= ≈11.377,下列說法正確的是(
A.大約有99.9%的把握認為“多看電視與人變冷漠”有關(guān)系
B.大約有99.9%的把握認為“多看電視與人變冷漠”沒有關(guān)系
C.某人愛看電視,則他變冷漠的可能性為99.9%
D.愛看電視的人中大約有99.9%會變冷漠

【答案】A
【解析】解:∵K2= ≈11.377>10.828,對照表格:

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

∴大約有99.9%的把握認為“多看電視與人變冷漠”有關(guān)系.
故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)f(x)=lg (x≠0,x∈R)有下列命題:
①函數(shù)y=f(x)的圖象關(guān)于y軸對稱;
②在區(qū)間(﹣∞,0)上,函數(shù)y=f(x)是減函數(shù);
③函數(shù)f(x)的最小值為lg2;
④在區(qū)間(1,+∞)上,函數(shù)f(x)是增函數(shù).
其中正確命題序號為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為為參數(shù)),圓的極坐標(biāo)方程為.

(1)求直線的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于兩點,若點的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如圖:

(1)求頻率分布直方圖中a的值;
(2)分別求出成績落在[50,60)與[60,70)中的學(xué)生人數(shù);
(3)從成績在[50,70)的學(xué)生任選2人,求此2人的成績都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣1﹣x.
(1)若存在x∈[﹣1,ln ],滿足a﹣ex+1+x<0成立,求實數(shù)a的取值范圍.
(2)當(dāng)x≥0時,f(x)≥(t﹣1)x恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)為定義在R上的奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(2)=0,則不等式x5f(x)>0的解集為(
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位組織職工去某地參觀學(xué)習(xí),需包車前往,甲車隊說:“如果領(lǐng)隊買一張全票,其余人可享受7折優(yōu)惠。”乙車隊說:“你們屬于團體票,按原價的7.5折優(yōu)惠。”這兩個車隊的原價、車型都是一樣的,試根據(jù)單位去的人數(shù)比較兩車隊的收費哪家更優(yōu)惠。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是指企業(yè)在校園、地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟的一種新形態(tài),一個共享單車企業(yè)在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:車輛)之間的關(guān)系”進行調(diào)查研究,在調(diào)查過程中進行了統(tǒng)計,得出相關(guān)數(shù)據(jù)見下表:

租用單車數(shù)量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙: .

(1)為了評價兩種模型的擬合效果,完成以下任務(wù):

①完成下表(計算結(jié)果精確到0.1)(備注: , 稱為相應(yīng)于點的殘差(也叫隨機誤差));

租用單車數(shù)量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估計值

2.4

2.1

1.6

殘差

0

0.1

模型乙

估計值

2.3

2

1.9

殘差

0.1

0

0

②分別計算模型甲與模型乙的殘差平方和,并通過比較, 的大小,判斷哪個模型擬合效果更好.

(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放,根據(jù)市場調(diào)查,這個城市投放8千輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6,問該公司應(yīng)該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,利潤=收入—成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)“2015年國民經(jīng)濟和社會發(fā)展統(tǒng)計公報” 中公布的數(shù)據(jù),從2011 年到2015 年,我國的

第三產(chǎn)業(yè)在中的比重如下:

年份

年份代碼

第三產(chǎn)業(yè)比重

(1)在所給坐標(biāo)系中作出數(shù)據(jù)對應(yīng)的散點圖;

(2)建立第三產(chǎn)業(yè)在中的比重關(guān)于年份代碼的回歸方程;

(3)按照當(dāng)前的變化趨勢,預(yù)測2017 年我國第三產(chǎn)業(yè)在中的比重.

附注: 回歸直線方程中的斜率和截距的最小二乘估計公式分別為:

, .

查看答案和解析>>

同步練習(xí)冊答案