已知直線l1的方程為y=x,直線l2的方程為y=ax+b(a,b為實數(shù)),當直線l1與l2夾角的范圍為[0,
π
12
)時,a的取值范圍是( 。
A、(
3
3
,1)∪(1,
3
B、(0,1)
C、(
3
3
3
D、(1,
3
分析:求出兩條直線的斜率,利用兩條直線的夾角公式,推出a的表達式,求出a的范圍即可.
解答:解:直線l1的方程為y=x,斜率為:1;直線l2的方程為y=ax+b(a,b為實數(shù)),的斜率為:a;
因為tanθ=|
a-1
1+a
|
,因為直線l1與l2夾角的范圍為[0,
π
12
),所以tanθ∈[0,2-
3
),
0≤|
a-1
1+a
|<2-
3
解得:a∈(
3
3
,
3

故選:C.
點評:本題是基礎題,考查直線的夾角的求法,注意三角函數(shù)值的求解,絕對值不等式的解法,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線l1的方程為3x+4y-12=0.
(1)若直線l2與l1平行,且過點(-1,3),求直線l2的方程;
(2)若直線l2與l1垂直,且l2與兩坐標軸圍成的三角形面積為4,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1的方程為y=x,直線l2的方程為ax-y=0(a為實數(shù)).當直線l1與直線l2的夾角在(0,
π12
)之間變動時,a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•貴州模擬)已知直線l1的方程為mx+y=5,直線l2經(jīng)過點(-4,3)且與圓x2+y2=25相切,若l1⊥l2,則m=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1的方程為y=x,直線l2的方程為ax-y=0(a為實數(shù)).當直線l1與直線l2的夾角在(0,
π
12
)之間變動時,a的取值范圍是
(
3
3
,1)∪(1,
3
)
(
3
3
,1)∪(1,
3
)

查看答案和解析>>

同步練習冊答案