【題目】已知函數(shù)f(x)=2lnx+ ﹣mx(m∈R).
(Ⅰ)當(dāng)m=﹣1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若f(x)在(0,+∞)上為單調(diào)遞減,求m的取值范圍;
(Ⅲ)設(shè)0<a<b,求證:

【答案】解:(Ⅰ)m=﹣1時,f(x)=2lnx+ +x,
∴f′(x)= +1,f(1)=2,f′(1)=2,
故切線方程是:y﹣2=2(x﹣1),
即2x﹣y=0;
(Ⅱ)f′(x)= ﹣m≤0在x∈(0,+∞)恒成立,
即m≥ 在x∈(0,+∞)恒成立,
令g(x)= ,(x>0),
∴m≥g(x)max ,
g(x)=﹣ +1,當(dāng) =1時,g(x)max=1,
故m≥1;
(Ⅲ)證明:由(Ⅱ)m=1時,
f(x)=2lnx+ ﹣x在x∈(0,+∞)上遞減,
∵0<a<b,∴ >1,
∴f( )<f(1),
∴2ln + <0,
lnb﹣lna<

【解析】(Ⅰ)求出函數(shù)的導(dǎo)數(shù),計算f(1),f′(1)的值,求出切線方程即可;(Ⅱ)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為m≥ 在x∈(0,+∞)恒成立,令g(x)= ,(x>0),根據(jù)函數(shù)的單調(diào)性求出m的范圍即可;(Ⅲ)取m=1,根據(jù)函數(shù)的單調(diào)性得到f( )<f(1),即2ln + <0,從而證明結(jié)論即可.
【考點精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點O,焦點在x軸上的橢圓的一個頂點為B(0,1),B到焦點的距離為2.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P,Q是橢圓上異于點B的任意兩點,且BP⊥BQ,線段PQ的中垂線l與x軸的交點為(x0 , 0),求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的方程為(x﹣3)2+y2=1,圓M的方程為(x﹣3﹣3cosθ)2+(y﹣3sinθ)2=1(θ∈R),過M上任意一點P作圓C的兩條切線PA,PB,切點分別為A、B,則∠APB的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲拋擲均勻硬幣2017次,乙拋擲均勻硬幣2016次,下列四個隨機(jī)事件的概率是0.5的是( )
①甲拋出正面次數(shù)比乙拋出正面次數(shù)多;
②甲拋出反面次數(shù)比乙拋出正面次數(shù)少;
③甲拋出反面次數(shù)比甲拋出正面次數(shù)多;
④乙拋出正面次數(shù)與乙拋出反面次數(shù)一樣多.
A.①②
B.①③
C.②③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 經(jīng)過點 ,且離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A,B是橢圓C的左,右頂點,P為橢圓上異于A,B的一點,以原點O為端點分別作與直線AP和BP平行的射線,交橢圓C于M,N兩點,求證:△OMN的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若F(x)=f[f(x)+1]+m有兩個零點x1 , x2 , 則x1+x2的取值范圍是(
A.[4﹣2ln2,+∞)
B.[1+ ,+∞)
C.[4﹣2ln2,1+
D.[﹣∞,1+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,已知曲線C1的參數(shù)方程為 ,(α為參數(shù),且α∈[0,π)),曲線C2的極坐標(biāo)方程為ρ=﹣2sinθ.
(1)求C1的極坐標(biāo)方程與C2的直角坐標(biāo)方程;
(2)若P是C1上任意一點,過點P的直線l交C2于點M,N,求|PM||PN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=3an+1.
(1)證明{an+ }是等比數(shù)列,并求{an}的通項公式;
(2)證明: + +…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為 (a>b>0,φ為參數(shù)),以Ο為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心在極軸上且經(jīng)過極點的圓,已知曲線C1上的點M(2, )對應(yīng)的參數(shù)φ= .θ= 與曲線C2交于點D( ).
(1)求曲線C1 , C2的直角坐標(biāo)方程;
(2)A(ρ1 , θ),B(ρ2 , θ+ )是曲線C1上的兩點,求 + 的值.

查看答案和解析>>

同步練習(xí)冊答案