【題目】已知橢圓: 的短軸長為,右焦點為,點是橢圓上異于左、右頂點的一點.
(1)求橢圓的方程;
(2)若直線與直線交于點,線段的中點為,證明:點關于直線的對稱點在直線上.
【答案】(1)(2)見解析
【解析】試題分析:(Ⅰ)由短軸長為,得,結(jié)合離心率及可得橢圓的方程;
(Ⅱ)“點關于直線的對稱點在直線上”等價于“平分”,設出直線的方程為,可解出, 的坐標,聯(lián)立直線與橢圓的方程可得點坐標,分為當軸時,即可求得的角平分線所在的直線方程,可得證,當時,利用點到直線的距離可求出點到直線的距離,即可得結(jié)果.
試題解析:解:(Ⅰ)由題意得 解得, 所以橢圓的方程為.
(Ⅱ)“點關于直線的對稱點在直線上”等價于“平分”.
設直線的方程為,則.
設點,由得,得
① 當軸時, ,此時.所以.
此時,點在的角平分線所在的直線或,即平分.
② 當時,直線的斜率為,所以直線的方程為,所以點到直線的距離
.
即點關于直線的對稱點在直線上.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形是梯形.四邊形是矩形.且平面平面,,,,是線段上的動點.
(Ⅰ)試確定點的位置,使平面,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形是直角梯形, , , 底面, , , 是的中點.
(1)求證:平面平面;
(2)若二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解某地高一學生的體能狀況,某校抽取部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.
(1)第二小組的頻率是多少?樣本容量是多少?
(2)若次數(shù)在110以上為達標,試估計全體高一學生的達標率為多少?
(3)通過該統(tǒng)計圖,可以估計該地學生跳繩次數(shù)的眾數(shù)是 , 中位數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】寫出下列命題的否定,并判斷其真假:
(1)p:不論m取何實數(shù),方程x2+x-m=0必有實數(shù)根;
(2)q:存在一個實數(shù)x,使得x2+x+1≤0;
(3)r:等圓的面積相等,周長相等.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小明計劃在8月11日至8月20日期間游覽某主題公園,根據(jù)旅游局統(tǒng)計數(shù)據(jù),該主題公園在此期間“游覽舒適度”(即在園人數(shù)與景區(qū)主管部門核定的最大瞬時容量之比, 以下為舒適, 為一般, 以上為擁擠),情況如圖所示,小明隨機選擇8月11日至8月19日中的某一天到達該主題公園,并游覽天.
(1)求小明連續(xù)兩天都遇上擁擠的概率;
(2)設是小明游覽期間遇上舒適的天數(shù),求的分布列和數(shù)學期望;
(3)由圖判斷從哪天開始連續(xù)三天游覽舒適度的方差最大?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用長14.8 m的鋼條制作一個長方體容器的框架,如果所制的底面的一邊比另一邊長0.5 m,那么容器的最大容積為________m3.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com