【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程檢驗員每天從該生產(chǎn)線上隨機抽取16個零件并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗,可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).

(1)假設(shè)生產(chǎn)狀態(tài)正常,X表示一天內(nèi)抽取的16個零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數(shù),P(X1)X的數(shù)學(xué)期望;

(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ-3σμ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進行檢查.

①試說明上述監(jiān)控生產(chǎn)過程方法的合理性;

②下面是檢驗員在一天內(nèi)抽取的16個零件的尺寸:

經(jīng)計算得==9.97s==≈0.212,其中xi為抽取的第i個零件的尺寸,i=1,2,,16.

用樣本平均數(shù)作為μ的估計值,用樣本標(biāo)準(zhǔn)差s作為σ的估計值,利用估計值判斷是否需對當(dāng)天的生產(chǎn)過程進行檢查?剔除﹣3+3之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計μσ(精確到0.01).

附:若隨機變量Z服從正態(tài)分布N(μ,σ2),P(μ-3σ<Z<μ+3σ)=0.997 4.0.997 4160.959 2,0.09.

【答案】(1) P(X≥1)=0.0408, E(X)=0.0416 (2) (。┍O(jiān)控生產(chǎn)過程的方法是合理的,(ⅱ)μ的估計值為10.02,σ的估計值為0.09

【解析】試題分析:(1)通過P(X=0)可求出P(X1)=1﹣P(X=0)=0.0408,利用二項分布的期望公式計算可得結(jié)論;

(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+)之外為小概率事件可知該監(jiān)控生產(chǎn)過程方法合理;

ⅱ)通過樣本平均數(shù)、樣本標(biāo)準(zhǔn)差s估計、可知(﹣3+3)=(9.334,10.606),進而需剔除(﹣3+3)之外的數(shù)據(jù)9.22,利用公式計算即得結(jié)論.

試題解析:

(1)由題可知尺寸落在(μ﹣3σ,μ+3σ)之內(nèi)的概率為0.9974,

則落在(μ﹣3σ,μ+3σ)之外的概率為1﹣0.9974=0.0026,

因為P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,

所以P(X≥1)=1﹣P(X=0)=0.0408,

又因為X~B(16,0.0026),

所以E(X)=16×0.0026=0.0416;

(2)(。┤绻a(chǎn)狀態(tài)正常,一個零件尺寸在(﹣3+3)之外的概率只有0.0026,一天內(nèi)抽取的16個零件中,出現(xiàn)尺寸在(﹣3+3)之外的零件的概率只有0.0408,發(fā)生的概率很。虼艘坏┌l(fā)生這種狀況,就有理由認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進行檢查,可見上述監(jiān)控生產(chǎn)過程的方法是合理的.

(ⅱ)由=9.97,s≈0.212,得μ的估計值為=9.97,σ的估計值為=0.212,由樣本數(shù)據(jù)可以看出一個

零件的尺寸在(﹣3+3)之外,因此需對當(dāng)天的生產(chǎn)過程進行檢查.

剔除(﹣3+3)之外的數(shù)據(jù)9.22,剩下的數(shù)據(jù)的平均數(shù)為

(16×9.97﹣9.22)=10.02,

因此μ的估計值為10.02.

2=16×0.2122+16×9.972≈1591.134,

剔除(﹣3+3)之外的數(shù)據(jù)9.22,剩下的數(shù)據(jù)的樣本方差為

(1591.134﹣9.222﹣15×10.022)≈0.008,

因此σ的估計值為≈0.09.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知四棱錐的底面為矩形, 底面,且),, 分別是, 的中點.

(1)當(dāng)為何值時,平面平面?并證明你的結(jié)論;

(2)當(dāng)異面直線所成角的正切值為2時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校組織的高二女子排球比賽中,有、兩個球隊進入決賽,決賽采用74勝制.假設(shè)、兩隊在每場比賽中獲勝的概率都是.并記需要比賽的場數(shù)為

(Ⅰ)求大于4的概率;

(Ⅱ)求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且函數(shù)

圖象的兩相鄰對稱軸間的距離為.

1)求的值;

2)將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標(biāo)伸長到原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求方程的解集;

2)若關(guān)于x的方程上恒有解,求m的取值范圍;

3)若不等式上恒成立,求m的取值范圍;

4)若關(guān)于x的方程上有解,那么當(dāng)m取某一確定值時,方程所有解的和記為,求所有可能值及相應(yīng)的m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在幾何體中,四邊形是菱形,平面,,且,.

(1)證明:平面平面;

(2)若二面角是直二面角,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池的池底水平鋪設(shè)污水凈化管道(,H是直角頂點)來處理污水,管道越短,鋪設(shè)管道的成本越低.設(shè)計要求管道的接口H的中點,點EF分別落在線段上.已知,記

1)試將污水管道的長度表示為的函數(shù),并寫出定義域;

2)已知,求此時管道的長度l

3)當(dāng)取何值時,鋪設(shè)管道的成本最低?并求出此時管道的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為,,離心率,短軸長為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過的直線與橢圓交于不同的兩點,則的面積是否存在最大值?若存在,求出這個最大值及直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)三次函數(shù)f(x)=ax3+bx2+cx+1的導(dǎo)函數(shù)為f(x)=3ax(x-2),若函數(shù)y=f(x)共有三個不同的零點,則a的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案