已知直線經(jīng)過點,且和圓相交,截得的弦長為4,求直線的方程。

解析試題分析:當(dāng)的斜率不存在時,方程為=5,
與圓C相切,不滿足題目要求                                        
設(shè)直線的斜率為,則的方程.               
如圖所示,設(shè)是圓心到直線的距離,
 是圓的半徑,則是弦長的一半,
中,=5.
×4=2.
所以   
所以滿足條件的直線方程為
又知 ,解得.
考點:直線的一般式方程;直線與圓相交的性質(zhì).
點評:考查學(xué)生掌握直徑與圓的弦垂直時直徑平分這條弦的運用,會利用點到直線的距離公式化簡求值.此
題是一道綜合題,要求學(xué)生掌握的知識要全面,解k時注意兩種情況都滿足.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點,直線。設(shè)圓的半徑為,圓心在上。

(1)若圓心也在直線上,過點作圓的切線,求切線的方程;
(2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點,直線,設(shè)圓的半徑為1, 圓心在上.

(1)若圓心也在直線上,過點作圓的切線,求切線方程;
(2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,交于A、B兩點;
(1)求過A、B兩點的直線方程;
(2)求過A、B兩點,且圓心在直線上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點是圓上的動點,
(1)求的取值范圍;
(2)若恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:以點C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點O, A,與y軸交于點O, B,其中O為原點.
(Ⅰ)求證:△OAB的面積為定值;
(Ⅱ)設(shè)直線y = –2x+4與圓C交于點M, N,若|OM| = |ON|,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知,圓C:,直線.
(1) 當(dāng)a為何值時,直線與圓C相切;
(2) 當(dāng)直線與圓C相交于A、B兩點,且時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
己知圓 直線.
(1) 求與圓相切, 且與直線平行的直線的方程;
(2) 若直線與圓有公共點,且與直線垂直,求直線軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)過點Q 作圓C:的切線,切點為D,且QD=4.
(1)求的值;
(2)設(shè)P是圓C上位于第一象限內(nèi)的任意一點,過點P作圓C的切線l,且l交x軸于點A,交y 軸于點B,設(shè),求的最小值(O為坐標(biāo)原點).

查看答案和解析>>

同步練習(xí)冊答案