(本小題滿分14分)
已知,圓C:,直線:.
(1) 當(dāng)a為何值時(shí),直線與圓C相切;
(2) 當(dāng)直線與圓C相交于A、B兩點(diǎn),且時(shí),求直線的方程.
(1) . (2)直線的方程是和.
解析試題分析:將圓C的方程配方得標(biāo)準(zhǔn)方程為,則此圓的圓心為(0 , 4),半徑為2. ……………………………2分
(1) 若直線與圓C相切,則有. ………………4分
解得. 6分
(2) 解法一:過圓心C作CD⊥AB, 7分
則根據(jù)題意和圓的性質(zhì),得
10分
解得. 12分
(解法二:聯(lián)立方程并消去,得
.
設(shè)此方程的兩根分別為、,則用即可求出a.)
∴直線的方程是和. 14分
考點(diǎn):本題考查了直線與圓的位置關(guān)系
點(diǎn)評:研究直線和圓的位置關(guān)系的相關(guān)問題時(shí)通常采用“幾何法”即抓住圓心到直線的的距離與半徑的關(guān)系
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,3),直線:,設(shè)圓的半徑為1,圓心在上.
(1)若圓心也在直線上,過點(diǎn)A作圓的切線,求切線的方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C的半徑為2,圓心在x軸的正半軸上,直線與圓C相切.
(I)求圓C的方程;
(II)過點(diǎn)Q(0,-3)的直線與圓C交于不同的兩點(diǎn)A、B,當(dāng)時(shí),求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C:內(nèi)有一點(diǎn)P(2,2),過點(diǎn)P作直線交圓C于A、B兩點(diǎn)。
(1)當(dāng)經(jīng)過圓心C時(shí),求直線的方程;
(2)當(dāng)弦AB的長為時(shí),寫出直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓,圓.
(1)若過點(diǎn)的直線被圓截得的弦長為,求直線的方程;
(2)設(shè)動(dòng)圓同時(shí)平分圓、圓的周長.
①求證:動(dòng)圓圓心在一條定直線上運(yùn)動(dòng);
②動(dòng)圓是否過定點(diǎn)?若過,求出定點(diǎn)的坐標(biāo);若不過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知圓C:.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點(diǎn)P()向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)
如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L垂直直線AB。點(diǎn)P是圓O上異于A、B的任意一點(diǎn),直線PA、PB分別交L與M、N點(diǎn)。
(Ⅰ)若∠PAB=30°,求以MN為直徑的圓方程;
(Ⅱ)當(dāng)點(diǎn)P變化時(shí),求證:以MN為直徑的圓必過圓O內(nèi)的一定點(diǎn)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com