(本小題共9分)
已知函數(shù)f(x)=。
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)判斷函數(shù)f(x)的奇偶性,并證明;
(Ⅲ)判斷函數(shù)f(x)在定義域上的單調(diào)性,并用定義證明。

(1)x∈(-1,1)(2)奇函數(shù)(3)根據(jù)函數(shù)的定義法加以證明,一設二作差,三變形,四定號來完成,并下結論,屬于基礎題。

解析試題分析:解:(Ⅰ)由>0,解得-1<x<1,所以f(x)的定義域是(-1,1) 3分
證明:(Ⅱ)由(Ⅰ)知x∈(-1,1)
又因為f(-x)= ===-=-f(x).
所以函數(shù)f(x)是奇函數(shù)。                                6分
(Ⅲ)設-1<x<x<1,
f(x)-f(x)==
因為1-x>1-x>0;1+ x>1+ x>0,
所以>1.  所以>0.
所以函數(shù)f(x)= 在(-1,1)上是增函數(shù).           9分
考點:函數(shù)概念和性質(zhì)的運用
點評:解決該試題的關鍵是能利用函數(shù)的性質(zhì)來分析證明函數(shù)單調(diào)性以及奇偶性的判定,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

定義在上的函數(shù)是減函數(shù),且是奇函數(shù),若,求實數(shù)的范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)是定義域為的奇函數(shù),(1)求實數(shù)的值;(2)證明上的單調(diào)函數(shù);(3)若對于任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)設函數(shù)
(1)畫出函數(shù)y=f(x)的圖像;
(2)若不等式,(a¹0,a、bÎR)恒成立,求實數(shù)x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù),其中e是自然數(shù)的底數(shù),
(1)當時,解不等式;
(2)當時,求正整數(shù)k的值,使方程在[k,k+1]上有解;
(3)若在[-1,1]上是單調(diào)增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)畫出函數(shù)的圖象,寫出函數(shù)的單調(diào)區(qū)間;
(2)解關于的不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當時,討論的單調(diào)性;
(Ⅱ)設時,若對任意,存在,使,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知函數(shù),其中.(1) 討論函數(shù)的單調(diào)性,并求出的極值;(2) 若對于任意,都存在,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)已知函數(shù),
(1)若,求的單調(diào)區(qū)間;
(2)當時,求證:

查看答案和解析>>

同步練習冊答案