【題目】已知函數(shù)f(x)=3x , x∈[﹣1,1],函數(shù)g(x)=[f(x)]2﹣2af(x)+3.
(1)當(dāng)a=0時(shí),求函數(shù)g(x)的值域;
(2)若函數(shù)g(x)的最小值為h(a),求h(a)的表達(dá)式;
(3)是否存在實(shí)數(shù)m,n同時(shí)滿足下列兩個(gè)條件:①m>n>3;②當(dāng)h(a)的定義域?yàn)閇n,m]時(shí),值域?yàn)閇n2 , m2]?若存在,求出m,n的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)解:∵函數(shù)f(x)=3x,x∈[﹣1,1],∴ ,設(shè)t=3x, ,

則φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,對(duì)稱軸為t=a.

當(dāng)a=0時(shí),φ(t)=t2+3, ,∴φ(t)∈[ ,12],

∴函數(shù)g(x)的值域是:[ ,12];


(2)解:∵函數(shù)φ(t)的對(duì)稱軸為t=a,

當(dāng)a< 時(shí),ymin=h(a)=φ( )=

當(dāng) 時(shí),ymin=h(a)=φ(a)=3﹣a2;

當(dāng)a>3時(shí),ymin=h(a)=φ(3)=12﹣6a.

,


(3)解:假設(shè)滿足題意的m,n存在,∵m>n>3,∴h(a)=12﹣6a,

∴函數(shù)h(a)在(3,+∞)上是減函數(shù).

又∵h(yuǎn)(a)的定義域?yàn)閇n,m],值域?yàn)閇n2,m2],

,兩式相減得6(m﹣n)=(m﹣n)(m+n),

又∵m>n>3,∴m﹣n≠0,∴m+n=6,與m>n>3矛盾.

∴滿足題意的m,n不存在


【解析】(1)設(shè)t=3x , 則φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2 , φ(t)的對(duì)稱軸為t=a,當(dāng)a=0時(shí),即可求出g(x)的值域;(2)由函數(shù)φ(t)的對(duì)稱軸為t=a,分類(lèi)討論當(dāng)a< 時(shí),當(dāng) 時(shí),當(dāng)a>3時(shí),求出最小值,則h(a)的表達(dá)式可求;(3)假設(shè)滿足題意的m,n存在,函數(shù)h(a)在(3,+∞)上是減函數(shù),求出h(a)的定義域,值域,然后列出不等式組,求解與已知矛盾,即可得到結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的值域的相關(guān)知識(shí),掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓心在直線x﹣2y=0上的圓C與y軸的正半軸相切,圓C截x軸所得弦的長(zhǎng)為2 ,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y= +lg(﹣x2+4x﹣3)的定義域?yàn)镸,
(1)求M;
(2)當(dāng)x∈M時(shí),求函數(shù)f(x)=a2x+2+34x(a<﹣3)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)畫(huà)出函數(shù)f(x)圖象;
(2)求f(﹣a2﹣1)(a∈R),f(f(3))的值;
(3)當(dāng)﹣4≤x<3時(shí),求f(x)取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與市場(chǎng)預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖(1);B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖(2)(注:所示圖中的橫坐標(biāo)表示投資金額,單位為萬(wàn)元)

(1)分別求出A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元資金,才能使企業(yè)獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,過(guò)拋物線C:y2=2px(p>0)的焦點(diǎn)F作直線交C于A、B兩點(diǎn),過(guò)A、B分別向C的準(zhǔn)線l作垂線,垂足為A′,B′,已知四邊形AA′B′F與BB′A′F的面積分別為15和7,則△A′B′F的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B、C是橢圓M: =1(a>b>0)上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為 ,BC過(guò)橢圓M的中心,且
(1)求橢圓M的方程;
(2)過(guò)點(diǎn)(0,t)的直線l(斜率存在時(shí))與橢圓M交于兩點(diǎn)P、Q,設(shè)D為橢圓M與y軸負(fù)半軸的交點(diǎn),且 ,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若不等式(a﹣2)x2+2(a﹣2)x﹣4<0對(duì)一切x∈R恒成立,則實(shí)數(shù)a取值的集合(
A.{a|a≤2}
B.{a|﹣2<a<2}
C.{a|﹣2<a≤2}
D.{a|a≤﹣2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)f(x)= ,存在一個(gè)正數(shù)b,使得f(x)的定義域和值域相同,則非零實(shí)數(shù)a的值為(
A.2
B.﹣2
C.﹣4
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案