在三棱錐中,和是邊長(zhǎng)為的等邊三角形,,分別是的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面⊥平面;
(Ⅲ)求三棱錐的體積.
(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)
【解析】本題主要考查直線與平面平行的判定,以及平面與平面垂直的判定和三棱錐的體積的計(jì)算,體積的求解在最近兩年高考中頻繁出現(xiàn),值得重視.
(1)欲證OD∥平面PAC,根據(jù)直線與平面平行的判定定理可知只需證OD與平面PAC內(nèi)一直線平行,而OD∥PA,PA⊂平面PAC,OD⊄平面PAC,滿足定理?xiàng)l件;
(2)欲證平面PAB⊥平面ABC,根據(jù)面面垂直的判定定理可知在平面PAB內(nèi)一直線與平面ABC垂直,而根據(jù)題意可得PO⊥平面ABC;
(3)根據(jù)OP垂直平面ABC得到OP為三棱錐P-ABC的高,根據(jù)三棱錐的體積公式可求出三棱錐P-ABC的體積.
解:(Ⅰ)分別為的中點(diǎn),
∥
又平面,平面
∥平面. ………………5分
(Ⅱ)連結(jié),
,為中點(diǎn),,
⊥,.
同理, ⊥,.
又,,
,⊥.
⊥,⊥,,
⊥平面.
又平面,平面⊥平面.…………………10分
(Ⅲ)由(Ⅱ)可知垂直平面
為三棱錐的高,且
. …………………………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在三棱錐中,和是邊長(zhǎng)為的等邊三角形,,分別是的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面⊥平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省高州市高三上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題
(本小題共14分)
在三棱錐中,和是邊長(zhǎng)為的等邊三角形,,分別是的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面⊥平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆福建省泉州市高三上學(xué)期期中文科數(shù)學(xué)試卷 題型:解答題
在三棱錐中,和是邊長(zhǎng)為的等邊三角形,,分別是的中點(diǎn).
(1)求證:∥平面;
(2)求證:平面⊥平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題12分)在三棱錐中,和是邊長(zhǎng)為的等邊三角形,,是中點(diǎn).
(Ⅰ)在棱上求一點(diǎn),使得∥平面;
(Ⅱ)求證:平面⊥平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com