【題目】如圖,四棱錐中,底面為梯形,底面,,,,.
(1)求證:平面平面;
(2)設(shè)為上一點,滿足,若直線與平面所成的角為,求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)由三角形的邊角關(guān)系可證,再由底面,可得.即可證明底面,由面面垂直的判定定理得證.
(2)以點為坐標(biāo)原點,,,分別為,,軸建立空間坐標(biāo)系,利用空間向量法求出二面角的余弦值.
解析:(1)證明:由,,,,,所以,又,
∴,
∴,
∴,
因為底面,底面,
∴.
因為,底面,底面,
底面,
底面,
所以面面.
(2)由(1)可知為與平面所成的角,
∴,∴,,由及,
可得,,
以點為坐標(biāo)原點,,,分別為,,軸建立空間坐標(biāo)系,
則
,,,,
設(shè)平面的法向量為,
則,,取,
設(shè)平面的法向量為,
則,,取,
所以,所以二面角余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,為邊的中點.將△沿翻折,得到四棱錐.設(shè)線段的中點為,在翻折過程中,有下列三個命題:
① 總有平面;
② 三棱錐體積的最大值為;
③ 存在某個位置,使與所成的角為.
其中正確的命題是____.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某日A, B, C三個城市18個銷售點的小麥價格如下表:
銷售點序號 | 所屬城市 | 小麥價格(元/噸) | 銷售點序號 | 所屬城市 | 小麥價格(元/噸) |
1 | A | 2420 | 10 | B | 2500 |
2 | C | 2580 | 11 | A | 2460 |
3 | C | 2470 | 12 | A | 2460 |
4 | C | 2540 | 13 | A | 2500 |
5 | A | 2430 | 14 | B | 2500 |
6 | C | 2400 | 15 | B | 2450 |
7 | A | 2440 | 16 | B | 2460 |
8 | B | 2500 | 17 | A | 2460 |
9 | A | 2440 | 18 | A | 2540 |
(Ⅰ)求B市5個銷售點小麥價格的中位數(shù);
(Ⅱ)甲從B市的銷售點中隨機(jī)挑選一個購買1噸小麥,乙從C市的銷售點中隨機(jī)挑選一個購買1噸小麥,求甲花費(fèi)的費(fèi)用比乙高的概率;
(Ⅲ)如果一個城市的銷售點小麥價格方差越大,則稱其價格差異性越大.請你對A、B、C三個城市按照小麥價格差異性從大到小進(jìn)行排序(只寫出結(jié)果).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《史記》卷六十五《孫子吳起列傳第五》中有這樣一道題:齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬,現(xiàn)從雙方的馬匹中隨機(jī)選一匹馬進(jìn)行一場比賽,齊王獲勝的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】七巧板是一種古老的中國傳統(tǒng)智力玩具,是由七塊板組成的.而這七塊板可拼成許多圖形,例如:三角形、不規(guī)則多邊形、各種人物、動物、建筑物等,清陸以湉《冷廬雜識》寫道:近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余.在18世紀(jì),七巧板流傳到了國外,至今英國劍橋大學(xué)的圖書館里還珍藏著一部《七巧新譜》.若用七巧板拼成一只雄雞,在雄雞平面圖形上隨機(jī)取一點,則恰好取自雄雞雞尾(陰影部分)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校為增加應(yīng)屆畢業(yè)生就業(yè)機(jī)會,每年根據(jù)應(yīng)屆畢業(yè)生的綜合素質(zhì)和學(xué)業(yè)成績對學(xué)生進(jìn)行綜合評估,已知某年度參與評估的畢業(yè)生共有2000名,其評估成績近似的服從正態(tài)分布.現(xiàn)隨機(jī)抽取了100名畢業(yè)生的評估成績作為樣本,并把樣本數(shù)據(jù)進(jìn)行了分組,繪制了頻率分布直方圖:
(1)求樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)若學(xué)校規(guī)定評估成績超過分的畢業(yè)生可參加三家公司的面試.
(ⅰ)用樣本平均數(shù)作為的估計值,用樣本標(biāo)準(zhǔn)差作為的估計值,請利用估計值判斷這2000名畢業(yè)生中,能夠參加三家公司面試的人數(shù);
(ⅱ)若三家公司每家都提供甲、乙、丙三個崗位,崗位工資表如下:
公司 | 甲崗位 | 乙崗位 | 丙崗位 |
9600 | 6400 | 5200 | |
9800 | 7200 | 5400 | |
10000 | 6000 | 5000 |
李華同學(xué)取得了三個公司的面試機(jī)會,經(jīng)過評估,李華在三個公司甲、乙、丙三個崗位的面試成功的概率均為,李華準(zhǔn)備依次從三家公司進(jìn)行面試選崗,公司規(guī)定:面試成功必須當(dāng)場選崗,且只有一次機(jī)會.李華在某公司選崗時,若以該崗位工資與未進(jìn)行面試公司的工資期望作為抉擇依據(jù),問李華可以選擇公司的哪些崗位?
并說明理由.
附:,若隨機(jī)變量,
則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題的個數(shù)是( 。
①若“p∨q”為真命題,則“p∧q”為真命題;
②“a∈(0,+∞),函數(shù)y=在定義域內(nèi)單調(diào)遞增”的否定;
③l為直線,α,β為兩個不同的平面,若l⊥β,α⊥β,則l∥α;
④“x∈R,≥0”的否定為“R,<0”.
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù) .
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個零點,,求的取值范圍,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com