【題目】如圖,有一塊半圓形空地,開發(fā)商計劃建一個矩形游泳池及其矩形附屬設施,并將剩余空地進行綠化,園林局要求綠化面積應最大化.其中半圓的圓心為,半徑為,矩形的一邊在直徑上,點、、在圓周上,、在邊上,且,設

(1)記游泳池及其附屬設施的占地面積為,求的表達式;

(2)怎樣設計才能符合園林局的要求?

【答案】(1)(2)

【解析】試題分析:(1)根據(jù)直角三角形求兩個矩形的長與寬,再根據(jù)矩形面積公式可得函數(shù)解析式,最后根據(jù)實際意義確定定義域(2)利用導數(shù)求函數(shù)最值,求導解得零點,列表分析導函數(shù)符號變化規(guī)律,確定函數(shù)單調性,進而得函數(shù)最值

試題解析:(1)由題意,,,且 為等邊三角形,

所以,,,

,

(2)要符合園林局的要求,只要最小,

由(1)知,

,即,

解得(舍去),

,

時,是單調減函數(shù),

時,是單調增函數(shù),

所以當時,取得最小值.

答:當滿足時,符合園林局要求.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列中, ,其前項和滿足.

(1)求證:數(shù)列為等差數(shù)列,并求的通項公式;

(2)設 ,求數(shù)列的前項和;

(3)設為非零整數(shù),是否存在的值,使得對任意恒成立,若存在求出的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,直平行六面體中,為棱上任意一點,為底面(除外)上一點,已知在底面上的射影為,若再增加一個條件,就能得到,現(xiàn)給出以下條件:

;②上;③平面;④直線在平面的射影為同一條直線.其中一定能成為增加條件的是__________.(把你認為正確的都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a<0,(3x2+a)(2x+b)≥0在(a,b)上恒成立,則b﹣a的最大值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面有命題: ①y=|sinx﹣ |的周期是π;
②y=sinx+sin|x|的值域是[0,2];
③方程cosx=lgx有三解;
④ω為正實數(shù),y=2sinωx在 上遞增,那么ω的取值范圍是 ;
⑤在y=3sin(2x+ )中,若f(x1)=f(x2)=0,則x1﹣x2必為π的整數(shù)倍;
⑥若A、B是銳角△ABC的兩個內(nèi)角,則點P(cosB﹣sinA,sinB﹣cosA在第二象限;
⑦在△ABC中,若 ,則△ABC鈍角三角形.其中真命題個數(shù)為(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場在店慶一周年開展購物折上折活動:商場內(nèi)所有商品按標價的八折出售,折后價格每滿500元再減100元.如某商品標價為1500元,則購買該商品的實際付款額為1500×0.8-200=1000(元).設購買某商品得到的實際折扣率.設某商品標價為元,購買該商品得到的實際折扣率為

)寫出當時, 關于的函數(shù)解析式,并求出購買標價為1000元商品得到的實際折扣率;

)對于標價在[2500,3500]的商品,顧客購買標價為多少元的商品,可得到的實際折扣率低于?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產(chǎn)某產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本(萬元),若年產(chǎn)量不足千件, 的圖像是如圖的拋物線,此時的解集為,且的最小值是,若年產(chǎn)量不小于千件, ,每千件商品售價為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;

(1)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;

(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,側面為正三角形,且平面 平面, 中點, .

(Ⅰ)求證:平面平面;

(Ⅱ)若二面角的平面角大小滿足,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù),f(1)=﹣
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調性,并用定義證明.

查看答案和解析>>

同步練習冊答案