【題目】如圖所示,直平行六面體中,為棱上任意一點(diǎn),為底面(除外)上一點(diǎn),已知在底面上的射影為,若再增加一個(gè)條件,就能得到,現(xiàn)給出以下條件:
①;②在上;③平面;④直線(xiàn)和在平面的射影為同一條直線(xiàn).其中一定能成為增加條件的是__________.(把你認(rèn)為正確的都填上)
【答案】①③④
【解析】對(duì)于①,因?yàn)锳D,,∴AD⊥,又AD⊥FH,F(xiàn)H
所以AD⊥平面FHCE,所以AD⊥CH,正確;
對(duì)于②,在上,當(dāng)F在時(shí),就是CB,顯然CB不垂直AD,錯(cuò)誤;
對(duì)于③,因?yàn)?/span>平面,所以,同上,易得:AD⊥CH,正確;
對(duì)于④,因?yàn)橹本(xiàn)和在平面的射影為同一條直線(xiàn),即平面FHCE⊥平面
又平面FHCE⊥平面ABCD,且平面ABCD平面=AD,所以AD⊥平面FHCE
∴AD⊥CH,正確.
故答案為:①③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】排列組合
(1)7位同學(xué)站成一排,甲、乙兩同學(xué)必須相鄰的排法共有多少種?
(2)7位同學(xué)站成一排,甲、乙和丙三個(gè)同學(xué)都不能相鄰的排法共有多少種?
(3)7位同學(xué)站成一排,甲不站排頭,乙不站排尾,不同站法種數(shù)有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了得到函數(shù) 的圖象,只要將函數(shù)y=sin2x的圖象( )
A.向右平移 個(gè)單位長(zhǎng)度
B.向左平移 個(gè)單位長(zhǎng)度
C.向右平移 個(gè)單位長(zhǎng)度
D.向左平移 個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們稱(chēng)滿(mǎn)足: ()的數(shù)列為“級(jí)夢(mèng)數(shù)列”.
(1)若是“級(jí)夢(mèng)數(shù)列”且.求: 和的值;
(2)若是“級(jí)夢(mèng)數(shù)列”且滿(mǎn)足, ,求的最小值;
(3)若是“0級(jí)夢(mèng)數(shù)列”且,設(shè)數(shù)列的前項(xiàng)和為.證明: ().
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一塊半圓形空地,開(kāi)發(fā)商計(jì)劃建一個(gè)矩形游泳池及其矩形附屬設(shè)施,并將剩余空地進(jìn)行綠化,園林局要求綠化面積應(yīng)最大化.其中半圓的圓心為,半徑為,矩形的一邊在直徑上,點(diǎn)、、、在圓周上,、在邊上,且,設(shè).
(1)記游泳池及其附屬設(shè)施的占地面積為,求的表達(dá)式;
(2)怎樣設(shè)計(jì)才能符合園林局的要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的極小值為0.
(1)求實(shí)數(shù)的值;
(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>