定義在上奇函數(shù)與偶函數(shù),對(duì)任意滿足+a為實(shí)數(shù)
(1)求奇函數(shù)和偶函數(shù)的表達(dá)式
(2)若a>2, 求函數(shù)在區(qū)間上的最值

(1)=sin2x+acosx ,
(2)當(dāng)cosx="-1" ,h(x)min=-a,當(dāng)cosx=, h(x)max=。

解析試題分析:(1)+ ①

   ②   3分
聯(lián)立①②得=sin2x+acosx   5分         7分
(2)=1-cos2x+acosx=-(cosx-)2+1   9分
若a>1,則對(duì)稱軸>1,且x時(shí),cosx[-1,]  11分
當(dāng)cosx="-1" ,h(x)min=-a,當(dāng)cosx=, h(x)max=   14分
考點(diǎn):本題主要考查函數(shù)的奇偶性,三角函數(shù)的圖象和性質(zhì),二次函數(shù)的圖象和性質(zhì)。
點(diǎn)評(píng):中檔題,根據(jù)+求奇函數(shù)與偶函數(shù),方法是列方程組。(2)利用換元思想,將問(wèn)題轉(zhuǎn)化成求二次函數(shù)在閉區(qū)間的最值問(wèn)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),若函數(shù)處的切線方程為,
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義在R上的偶函數(shù)上遞增,函數(shù)f(x)的一個(gè)零點(diǎn)為,
求滿足的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),如果函數(shù)僅有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
(2)當(dāng)時(shí),比較與1的大小.
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題


已知函數(shù)時(shí)都取得極值.
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對(duì),不等式恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當(dāng) 時(shí),,且。
(1)求的值,(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若為定義域上的單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值;
(Ⅲ)當(dāng)時(shí),且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)若函數(shù)處的切線方程為,求實(shí)數(shù)的值;
(2)若在其定義域內(nèi)單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),.現(xiàn)已畫(huà)出函數(shù)軸左側(cè)的圖像,如圖所示,并根據(jù)圖像

(1)寫(xiě)出函數(shù)的增區(qū)間;
(2)寫(xiě)出函數(shù)的解析式;     
(3)若函數(shù),求函數(shù)的最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案