【題目】如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)求證:AE⊥平面PCD;
(2)求PB和平面PAD所成的角的大;
(3)求二面角A-PD-C的正弦值.
【答案】(1)見證明;(2)45°(3)
【解析】
(1)由線面垂直的性質(zhì)可得,結(jié)合,可得平面,由等腰三角形的性質(zhì)可得,從而可得結(jié)果;(2) 先證明平面,可得為和平面所成的角,判斷是等腰直角三角形,從而可得結(jié)果;(3)過點作,垂足為,連接,由(1)知,平面,則在平面內(nèi)的射影是,則可證得,則是二面角的平面角,設(shè),可求得,由直角三角形的性質(zhì)可得結(jié)果.
(1)因為PA⊥底面ABCD
CD平面ABCD,故CD⊥PA.
因為CD⊥AC,PA∩AC=A,
所以CD⊥平面PAC.
又AE平面PAC,所以AE⊥CD.
由PA=AB=BC,∠ABC=60°,可得AC=PA.
因為E是PC的中點,所以AE⊥PC.
又PC∩CD=C,
所以AE⊥平面PCD.
(2)因為PA⊥底面ABCD,
AB平面ABCD,故PA⊥AB.
又AB⊥AD,PA∩AD=A,
所以AB⊥平面PAD,
故PB在平面PAD內(nèi)的射影為PA,從而∠APB為PB和平面PAD所成的角.
在Rt△PAB中,AB=PA,
故∠APB=45°.
所以PB和平面PAD所成的角的大小為45°.
(3)過點E作EM⊥PD,垂足為M,連接AM,如圖所示.
由(1)知,AE⊥平面PCD,則AM在平面PCD內(nèi)的射影是EM,則可證得AM⊥PD.
因此∠AME是二面角A-PD-C的平面角.由已知可得∠CAD=30°.
設(shè)AC=a,
可得PA=a,AD=a,PD=a,AE=a.
在Rt△ADP中,
因為AM⊥PD,
所以AM·PD=PA·AD,
則AM==a.
在Rt△AEM中,
sin∠AME==.
所以二面角A-PD-C的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,求實數(shù)的取值范圍;
(2)設(shè)函數(shù)的極大值為,極小值為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足(),().
(1)若,證明:是等比數(shù)列;
(2)若存在,使得,,成等差數(shù)列.
① 求數(shù)列的通項公式;
② 證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,為左、右焦點,直線過交橢圓于,兩點.
(1)若垂直于軸時,求;
(2)當(dāng)時,在軸上方時,求,的坐標(biāo);
(3)若直線交軸于,直線交軸于,是否存在直線,使,若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點,直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線方程;
(2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在其圖象上存在不同的兩點,,其坐標(biāo)滿足條件: 的最大值為0,則稱為“柯西函數(shù)”,則下列函數(shù):① :②:③:④.
其中為“柯西函數(shù)”的個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為矩形,,均為等邊三角形,,.
(1)過作截面與線段交于點,使得平面,試確定點的位置,并予以證明;
(2)在(1)的條件下,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季取暖時減少能源消耗,業(yè)主決定對房屋的屋頂和外墻噴涂某種新型隔熱材料,該材料有效使用年限為20年.已知房屋外表噴一層這種隔熱材料的費用為每毫米厚6萬元,且每年的能源消耗費用(萬元)與隔熱層厚度(毫米)滿足關(guān)系:.設(shè)為隔熱層建造費用與年的能源消耗費用之和.
(1)請解釋的實際意義,并求的表達(dá)式;
(2)當(dāng)隔熱層噴涂厚度為多少毫米時,業(yè)主所付的總費用最少?并求此時與不建隔熱層相比較,業(yè)主可節(jié)省多少錢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com