【題目】設(shè)為直線上的動(dòng)點(diǎn),過(guò)點(diǎn)作圓的兩條切線,切點(diǎn)分別為,則四邊形為圓心的面積的最小值為
A. B. C. D.
【答案】C
【解析】分析:由圓的方程為求得圓心C(1,1)、半徑r為:1,由“若四邊形面積最小,則圓心與點(diǎn)P的距離最小時(shí),即距離為圓心到直線的距離時(shí),切線長(zhǎng)PA,PB最小”,最后將四邊形轉(zhuǎn)化為兩個(gè)直角三角形面積求解.
詳解:∵圓的方程為:
∴圓心C(1,1)、半徑r為:1
根據(jù)題意,若四邊形面積最小
當(dāng)圓心與點(diǎn)P的距離最小時(shí),距離為圓心到直線的距離時(shí),
切線長(zhǎng)PA,PB最小
圓心到直線的距離為d=2
∴|PA|=|PB|=
∴
故選C.
點(diǎn)晴:本題主要考察直線與圓的位置關(guān)系,主要涉及了構(gòu)造四邊形及其面積的求法,同時(shí)還考察了轉(zhuǎn)化思想,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對(duì)價(jià)格(單位:千元/噸)和利潤(rùn)的影響,對(duì)近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如下表:
1 | 2 | 3 | 4 | 5 | |
7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
已知和具有線性相關(guān)關(guān)系.
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少噸時(shí),年利潤(rùn)取到最大值?(保留一位小數(shù))
參考數(shù)據(jù)及公式: , ,
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的離心率為,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓恒有兩個(gè)交點(diǎn), 且(為坐標(biāo)原點(diǎn))?若存在,寫出該圓的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程,其中。
(I)若隨機(jī)選自集合,隨機(jī)選自集合,求方程有實(shí)根的概率;
(Ⅱ)若隨機(jī)選自區(qū)間,隨機(jī)選自區(qū)間,求方程有實(shí)根的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓與直線相切.
(1)求圓的方程;
(2)求直線截圓所得弦的長(zhǎng);
(3)過(guò)點(diǎn)作兩條直線與圓相切,切點(diǎn)分別為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 的部分圖象如圖所示,分別是圖象的最低點(diǎn)和最高點(diǎn),.
(1)求函數(shù)的解析式;
(2)將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,再把所得圖象上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AF平面ABCD,四邊形ABEF為矩形,四邊形ABCD為直角梯形, .
(1)求證: 平面;
(2)線段上是否存在一點(diǎn),使得 ?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x2|x2+2x-3<0},B=.
(1)在區(qū)間(-4,4)上任取一個(gè)實(shí)數(shù)x,求“x∈A∩B”的概率;
(2)設(shè)(a,b)為有序?qū)崝?shù)對(duì),其中a是從集合A中任取的一個(gè)整數(shù),b是從集合B中任取的一個(gè)整數(shù),求“b-a∈A∪B”的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com