【題目】設(shè)函數(shù)f(x)=|x-1|+|x-a|,a∈R.
(Ⅰ)當a=4時,求不等式f(x)≥7的解集;
(Ⅱ)若f(x)≥5對x∈R恒成立,求a的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的離心率為,以原點為圓心,橢圓的長半軸為半徑的圓與直線相切.
(1)求橢圓的標準方程;
(2)已知點, 為動直線與橢圓的兩個交點,問:在軸上是否存在點,使為定值?若存在,試求出點的坐標和定值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x)(x∈D),若x∈D時,均有f′(x)<f(x)成立,則稱函數(shù)f(x)是J函數(shù).
(Ⅰ)當函數(shù)f(x)=x2+m(ex+x),x≥e是J函數(shù)時,求實數(shù)m的取值范圍;
(Ⅱ)若函數(shù)g(x)為R+上的J函數(shù),試比較g(a)與ea-1g(1)的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x-a|+|2x-1|(a∈R).
(1)當a=-1時,求f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含集合,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥AD,,AC=AD=CD,E是AD的中點.
(Ⅰ)證明CE∥平面PAB;
(Ⅱ)證明:平面PAD⊥平面PCE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=4cosθ-2sinθ.
(Ⅰ)求C的參數(shù)方程;
(Ⅱ)若點A在圓C上,點B(3,0),求AB中點P到原點O的距離平方的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且對任意正整數(shù),都有成立.記.
(Ⅰ)求數(shù)列和的通項公式;
(Ⅱ)設(shè),數(shù)列的前項和為,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將y=sinx的圖象
A. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變
B. 向左平移至個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變
C. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變
D. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為, 的周長為.
(1)求橢圓的標準方程;
(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com