在正方體ABCD A1B1C1D1中,點(diǎn)M,N分別在AB1,BC1上(M,N不與B1,C1重合),且AM=BN,那么①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN與A1C1異面,以上4個(gè)結(jié)論中,正確結(jié)論的序號(hào)是________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為2的正方形,PA⊥底面ABCD且PA = 4,則PC與底面ABCD所成角的正切值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
若空間中有兩條直線,則“這兩條直線為異面直線”是“這兩條直線沒(méi)有公共點(diǎn)”的__________條件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖所示,在正四棱柱ABCD-A1B1C1D1中,E,F(xiàn),G,H分別是CC1,C1D1,D1D,DC的中點(diǎn),N是BC的中點(diǎn),點(diǎn)M在四邊形EFGH上或其內(nèi)部運(yùn)動(dòng),且使MN⊥AC.
對(duì)于下列命題:①點(diǎn)M可以與點(diǎn)H重合;②點(diǎn)M可以與點(diǎn)F重合;③點(diǎn)M可以在線段FH上;④點(diǎn)M可以與點(diǎn)E重合.其中真命題的序號(hào)是________(把真命題的序號(hào)都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,平面平面,四邊形是正方形,四邊形是矩形,且,是的中點(diǎn),則與平面所成角的正弦值為_(kāi)__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,過(guò)對(duì)角線BD1的一個(gè)平面交AA1于E,交CC1于F,得四邊形BFD1E,給出下列結(jié)論:
①四邊形BFD1E有可能為梯形
②四邊形BFD1E有可能為菱形
③四邊形BFD1E在底面ABCD內(nèi)的投影一定是正方形
④四邊形BFD1E有可能垂直于平面BB1D1D
⑤四邊形BFD1E面積的最小值為
其中正確的是 (請(qǐng)寫(xiě)出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
下列命題中正確的是 .
①若△ABC在平面α外,它的三條邊所在的直線分別交平面α于P,Q,R,則P,Q,R三點(diǎn)共線;
②若三條直線a,b,c互相平行且分別交直線l于A,B,C三點(diǎn),則這四條直線共面;
③空間中不共面的五個(gè)點(diǎn)一定能確定10個(gè)平面;
④若a不平行于平面α,且a?α,則α內(nèi)的所有直線與a異面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,點(diǎn)M∈AB1,N∈BC1,且AM=BN≠,有以下四個(gè)結(jié)論:
①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN與A1C1是異面直線.其中正確命題的序號(hào)是________.(注:把你認(rèn)為正確命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖所示,在直三棱柱ABC-A1B1C1中,底面為直角三角形,∠ACB=90°,AC=6,BC=CC1=,P是BC1上一動(dòng)點(diǎn),則CP+PA1的最小值是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com