在四棱錐中,底面是直角梯形,,∠,平面⊥平面.

(1)求證:⊥平面
(2)求平面和平面所成二面角(小于)的大。
(3)在棱上是否存在點(diǎn)使得∥平面?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

(Ⅰ)因?yàn)?,所以.因?yàn)?平面平面,平面平面,平面,所以 平面;(Ⅱ) ;(Ⅲ)解:在棱上存在點(diǎn)使得∥平面,此時(shí).

解析試題分析:(Ⅰ)證明:因?yàn)?,
所以 .                        ………………………………………1分
因?yàn)?平面平面,平面平面,
平面,
所以 平面.                  ………………………………………3分
(Ⅱ)解:取的中點(diǎn),連接.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/22/8/1wmmp3.png" style="vertical-align:middle;" />,
所以 .
因?yàn)?平面平面,平面平面,平面,
所以 平面.                ………………………………………4分
如圖,

為原點(diǎn),所在的直線為軸,在平面內(nèi)過(guò)垂直于的直
線為軸,所在的直線為軸建立空間直角坐標(biāo)系.不妨設(shè).由
直角梯形可得,
.
所以 ,.
設(shè)平面的法向量.
因?yàn)?
所以

,則.
所以 .                 ………………………………………7分
取平面的一個(gè)法向量n.
所以 .
所以 平面和平面所成的二面角(小于)的大小為.
………………………………………9分
(Ⅲ)解:在棱上存在點(diǎn)使得∥平面,此時(shí). 理由如下:…………10分
的中點(diǎn),連接

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
在四棱錐中,//,, ,平面,.

(Ⅰ)設(shè)平面平面,求證://
(Ⅱ)求證:平面;
(Ⅲ)設(shè)點(diǎn)為線段上一點(diǎn),且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

圖1,平面四邊形關(guān)于直線對(duì)稱,,.把沿折起(如圖2),使二面角的余弦值等于

對(duì)于圖二,完成以下各小題:
(Ⅰ)求兩點(diǎn)間的距離;
(Ⅱ)證明:平面;
(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,,E、F分別是AB、PD的中點(diǎn).

(Ⅰ)求證:平面PCE 平面PCD;
(Ⅱ)求三棱錐P-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖,直三棱柱ABCA1B1C1中,ACBC=1,∠ACB=90°,AA1,DA1B1中點(diǎn).

(1)求證:C1DAB1 ;
(2)當(dāng)點(diǎn)FBB1上什么位置時(shí),會(huì)使得AB1⊥平面C1DF?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)如圖,已知四棱錐P—ABCD中,底面ABCD為菱形,PA平面ABCD,,BC=1,E為CD的中點(diǎn),PC與平面ABCD成角。

(1)求證:平面EPB平面PBA;(2)求二面角P-BD-A 的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱柱中,平面,,的中點(diǎn).

(1)求證:∥平面;
(2)求二面角的余弦值;
(3)設(shè)的中點(diǎn)為,問(wèn):在矩形內(nèi)是否存在點(diǎn),使得平面.若存在,求出點(diǎn)的位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(14分)如右圖,簡(jiǎn)單組合體ABCDPE,其底面ABCD為邊長(zhǎng)為的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=.

(1)若N為線段PB的中點(diǎn),求證:EN//平面ABCD;
(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)已知:四邊形ABCD是空間四邊形,E, H分別是邊AB,AD的中點(diǎn),F(xiàn), G分別是邊CB,CD上的點(diǎn),且
求證:(1)四邊形EFGH是梯形;
(2)FE和GH的交點(diǎn)在直線AC上 .

查看答案和解析>>

同步練習(xí)冊(cè)答案