下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是( 。
分析:對選擇支,逐個判斷,即可得到結論.
解答:解:對于A,y=e-x=
1
ex
,∴函數(shù)非奇非偶,即A不正確;
對于B,定義域為[0,+∞),不關于原點對稱,∴函數(shù)非奇非偶,即B不正確;
對于C,y′=3x2≥0,函數(shù)為增函數(shù);(-x)3=-x3,函數(shù)是奇函數(shù);
對于D,函數(shù)不是R上的增函數(shù),即D不正確
故選C.
點評:本題考查函數(shù)單調性與奇偶性的結合,考查學生對概念的理解,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列判斷中:
①f(x)是定義在R上的奇函數(shù),則f(0)=0必成立;
②y=2x與y=log2x互為反函數(shù),其圖象關于直線y=x對稱;
③f(x)是定義在R上的偶函數(shù),則f(x)=f(|x|)=f(-x)必成立;
④當a>0且a≠l時,函數(shù)f(x)=ax-2-3必過定點(2,-2);
⑤函數(shù)f(x)=lgx2,必為偶函數(shù).
其中正確的結論為
①②③④⑤
①②③④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•奉賢區(qū)一模)若對于定義在R上的函數(shù)f(x),其圖象是連續(xù)不斷的,且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf(x)=0對任意實數(shù)x都成立,則稱f(x)是一個“λ-伴隨函數(shù)”.有下列關于“λ-伴隨函數(shù)”的結論:
①f(x)=0是常數(shù)函數(shù)中唯一一個“λ-伴隨函數(shù)”;
②f(x)=x不是“λ-伴隨函數(shù)”;
③f(x)=x2是“λ-伴隨函數(shù)”;
④“
1
2
-伴隨函數(shù)”至少有一個零點.
其中正確結論的個數(shù)是( 。﹤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果一個函數(shù)f(x)在其定義區(qū)間內(nèi)對任意實數(shù)x,y都滿足f(
x+y
2
)≤
f(x)+f(y)
2
,則稱這個函數(shù)是下凸函數(shù),下列函數(shù)
(1)f(x)=2x
(2)f(x)=x3;
(3)f(x)=log2x(x>0);
(4)f(x)=
x,x<0
2x,x≥0

中是下凸函數(shù)的有(  )

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省深圳市高級中學高一(上)期中數(shù)學試卷(解析版) 題型:選擇題

如果一個函數(shù)f(x)在其定義區(qū)間內(nèi)對任意實數(shù)x,y都滿足,則稱這個函數(shù)是下凸函數(shù),下列函數(shù)
(1)f(x)=2x
(2)f(x)=x3;
(3)f(x)=log2x(x>0);
(4)
中是下凸函數(shù)的有( )
A.(1),(2)
B.(2),(3)
C.(3),(4)
D.(1),(4)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省深圳市高級中學高一(上)期中數(shù)學試卷(解析版) 題型:選擇題

如果一個函數(shù)f(x)在其定義區(qū)間內(nèi)對任意實數(shù)x,y都滿足,則稱這個函數(shù)是下凸函數(shù),下列函數(shù)
(1)f(x)=2x;
(2)f(x)=x3
(3)f(x)=log2x(x>0);
(4)
中是下凸函數(shù)的有( )
A.(1),(2)
B.(2),(3)
C.(3),(4)
D.(1),(4)

查看答案和解析>>

同步練習冊答案