【題目】已知數(shù)列滿足記數(shù)列的前項和為

1)求證:數(shù)列為等比數(shù)列,并求其通項;

2)求;

3)問是否存在正整數(shù),使得成立?說明理由.

【答案】(1) (2) (3)當為偶數(shù)時, 都成立,(3)詳見解析

【解析】試題分析:(1),所以為等比數(shù)列, 所以;(2 ,所以 ,分奇偶討論,當為奇數(shù)時,可令,當為偶數(shù)時,可令;(3),當 為偶數(shù)時, 成立 .

試題解析

因為

,

,所以。

(2) ,所以 ,

為奇數(shù)時,可令

,

為偶數(shù)時,可令

;

3)假設存在正整數(shù) ,使得 成立,

因為 ,

所以只要

即只要滿足 ,和② ,

對于①只要 就可以;

對于②

為奇數(shù)時,滿足 ,不成立,

為偶數(shù)時,滿足,即

,

因為

,且當 時, ,

所以當 為偶數(shù)時,②式成立,即當 為偶數(shù)時, 成立 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+2ex+m﹣1,g(x)=x+ (x>0).
(1)若y=g(x)﹣m有零點,求m的取值范圍;
(2)確定m的取值范圍,使得g(x)﹣f(x)=0有兩個相異實根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面程序框圖的算法思路源于我國古代數(shù)學名著《九章算術》中的“更相減損術”,執(zhí)行該程序框圖,若輸入的分別為14,18,則輸出的為( )

A. 0 B. 2 C. 4 D. 14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線過定點P(2,1).
(1)求經(jīng)過點P且在兩坐標軸上的截距相等的直線方程;
(2)若過點P的直線l與x軸和y軸的正半軸分別交于A,B兩點,求△AOB面積的最小值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓M經(jīng)過點A(3,0),且與直線l:x=﹣3相切,動圓圓心M的軌跡方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓C: 的左焦點為F,過點F的直線與橢圓C相交于A,B兩點,直線l的傾斜角為60°,

(1)求橢圓C的離心率;
(2)如果|AB|= ,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一條光線經(jīng)過P(2,3),射在直線l:xy10,反射后穿過點Q(1,1).

(1)求入射光線的方程;

(2)求這條光線從PQ的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足3(n+1)an=nan+1(n∈N*),且a1=3,
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn;
(3)若 = ,求證: + +…+ <1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若方程 所表示的曲線為C,給出下列四個命題:
①若C為橢圓,則1<t<4;
②若C為雙曲線,則t>4或t<1;
③曲線C不可能是圓;
④若 ,曲線C為橢圓,且焦點坐標為 ;
⑤若t<1,曲線C為雙曲線,且虛半軸長為
其中真命題的序號為 . (把所有正確命題的序號都填在橫線上)

查看答案和解析>>

同步練習冊答案