f′(x0)=2, =_________. 
-1
根據(jù)導數(shù)的定義:
f′(x0)=(這時)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩地相距200千米,汽車從甲地勻速行駛到乙地,速度不得超過50千米/ 小時。已知汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v千米/小時的平方成正比,比例系數(shù)為 0.02;固定部分為50元/小時.
(1)把全程運輸成本y(元)表示為速度v(千米/時)的函數(shù),并指出定義域;
(2)為了使全程運輸成本最小,汽車應以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知s=,(1)計算t從3秒到3.1秒內平均速度;(2)求t=3秒是瞬時速度。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

x1x2為方程4x2-4mx+m+2=0的兩個實根,當m=_________時,x12+x22有最小值_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若曲線y=x2-1與y=1-x3x=x0處的切線互相垂直,則x0等于
A.B.-
C.D.或0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

判斷函數(shù)
處是否可導.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

定義在(-∞,4]上的減函數(shù)f(x)滿足f(m-sinx)≤f(+cos2x)對任意x∈R都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線處的切線方程為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)=      .

查看答案和解析>>

同步練習冊答案