【題目】共有編號分別為1,2,3,4,5的五個座位,在甲同學不坐2號座位,乙同學不坐5號座位的條件下,甲、乙兩位同學的座位號相加是偶數的概率為( )
A.B.C.D.
【答案】A
【解析】
先求出事件:甲同學不坐2號座位,乙同學不坐5號座位的基本事件的總數,再求得事件:甲、乙兩位同學的座位號相加是偶數包含事件的個數,然后代入古典概型的概率公式即可。
設甲同學的座位號為a,乙同學的座位號b,則事件:甲同學不坐2號座位,乙同學不坐5號座位包含的基本事件為(1,2)、(1,3)、(1,4)、(3、1)、(3,2)、(3,4)、(4,1)、(4,2)、(4,3)、(5,1)(5,2)、(5,3)、(5,4),共13種情況。事件:甲、乙兩位同學的座位號相加是偶數包含(1,3)、(3、1)、(4,2)、(5,1)、(5,3)共5種情況,所以該事件發(fā)生的該,選A。
科目:高中數學 來源: 題型:
【題目】自從新型冠狀病毒爆發(fā)以來,全國范圍內采取了積極的措施進行防控,并及時通報各項數據以便公眾了解情況,做好防護.以下是湖南省2020年1月23日-31日這9天的新增確診人數.
日期 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
時間 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
新增確診人數 | 15 | 19 | 26 | 31 | 43 | 78 | 56 | 55 | 57 |
經過醫(yī)學研究,發(fā)現新型冠狀病毒極易傳染,一個病毒的攜帶者在病情發(fā)作之前通常有長達14天的潛伏期,這個期間如果不采取防護措施,則感染者與一位健康者接觸時間超過15秒,就有可能傳染病毒.
(1)將1月23日作為第1天,連續(xù)9天的時間作為變量x,每天新增確診人數作為變量y,通過回歸分析,得到模型用于對疫情進行分析.對上表的數據作初步處理,得到下面的一些統(tǒng)計量的值(部分數據已作近似處理):,.根據相關數據,求該模型的回歸方程(結果精確到0.1),并依據該模型預測第10天新增確診人數.
(2)如果一位新型冠狀病毒的感染者傳染給他人的概率為0.3,在一次12人的家庭聚餐中,只有一位感染者參加了聚餐,記余下的人員中被感染的人數為,求最有可能(即概率最大)的值是多少.
附:對于一組數據,…,,其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為與,且乙投球2次均未命中的概率為.
(Ⅰ)求乙投球的命中率;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數記為,求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓的圓心的坐標為,且圓與直線:相切,過點的動直線與圓相交于,兩點,直線與直線的交點為.
(1)求圓的標準方程;
(2)求的最小值;
(3)問:是否是定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某音樂院校舉行“校園之星”評選活動,評委由本校全體學生組成,對兩位選手,隨機調查了個學生的評分,得到下面的莖葉圖:
通過莖葉圖比較兩位選手所得分數的平均值及分散程度(不要求計算出具體值,得出結論即可);
校方將會根據評分記過對參賽選手進行三向分流:
所得分數 | 低于分 | 分到分 | 不低于分 |
分流方向 | 淘汰出局 | 復賽待選 | 直接晉級 |
記事件“獲得的分流等級高于”,根據所給數據,以事件發(fā)生的頻率作為相應事件發(fā)生的概率,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)新研發(fā)了一種產品,產品的成本由原料成本及非原料成本組成.每件產品的非原料成本(元)與生產該產品的數量(千件)有關,經統(tǒng)計得到如下數據:
根據以上數據,繪制了散點圖.
觀察散點圖,兩個變量不具有線性相關關系,現考慮用反比例函數模型和指數函數模型分別對兩個變量的關系進行擬合.已求得用指數函數模型擬合的回歸方程為,與的相關系數.參考數據(其中):
(1)用反比例函數模型求關于的回歸方程;
(2)用相關系數判斷上述兩個模型哪一個擬合效果更好(精確到0.01),并用其估計產量為10千件時每件產品的非原料成本;
(3)該企業(yè)采取訂單生產模式(根據訂單數量進行生產,即產品全部售出).根據市場調研數據,若該產品單價定為100元,則簽訂9千件訂單的概率為0.8,簽訂10千件訂單的概率為0.2;若單價定為90元,則簽訂10千件訂單的概率為0.3,簽訂11千件訂單的概率為0.7.已知每件產品的原料成本為10元,根據(2)的結果,企業(yè)要想獲得更高利潤,產品單價應選擇100元還是90元,請說明理由.
參考公式:對于一組數據,,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,,相關系數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)新研發(fā)了一種產品,產品的成本由原料成本及非原料成本組成.每件產品的非原料成本(元)與生產該產品的數量(千件)有關,經統(tǒng)計得到如下數據:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
112 | 61 | 44.5 | 35 | 30.5 | 28 | 25 | 24 |
根據以上數據,繪制了散點圖.
觀察散點圖,兩個變量不具有線性相關關系,現考慮用反比例函數模型和指數函數模型分別對兩個變量的關系進行擬合.已求得用指數函數模型擬合的回歸方程為,與的相關系數.
參考數據(其中):
183.4 | 0.34 | 0.115 | 1.53 | 360 | 22385.5 | 61.4 | 0.135 |
(1)用反比例函數模型求關于的回歸方程;
(2)用相關系數判斷上述兩個模型哪一個擬合效果更好(精確到0.01),并用其估計產量為10千件時每件產品的非原料成本;
(3)該企業(yè)采取訂單生產模式(根據訂單數量進行生產,即產品全部售出).根據市場調研數據,若該產品單價定為100元,則簽訂9千件訂單的概率為0.8,簽訂10千件訂單的概率為0.2;若單價定為90元,則簽訂10千件訂單的概率為0.3,簽訂11千件訂單的概率為0.7.已知每件產品的原料成本為10元,根據(2)的結果,企業(yè)要想獲得更高利潤,產品單價應選擇100元還是90元,請說明理由.
參考公式:對于一組數據,,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,,相關系數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com