(2013•松江區(qū)一模)已知z∈C,且滿足|z|2+(z+
.
z
)i=5+2i

(1)求z;
(2)若m∈R,w=zi+m,求證:|w|≥1.
分析:(1)利用復(fù)數(shù)模的定義、互為共軛復(fù)數(shù)的意義及復(fù)數(shù)相等的定義即可解出;
(2)利用復(fù)數(shù)模的計(jì)算公式即可證明.
解答:解:(1)設(shè)z=a+bi(a,b∈R),則|z|2=a2+b2,(z+
.
z
)i=2ai
,
|z|2+(z+
.
z
)i=5+2i
得a2+b2+2ai=5+2i
關(guān)鍵復(fù)數(shù)相等的定義可得
a2+b2=5
2a=2

解得
a=1
b=2
或  
a=1
b=-2

∴z=1+2i或z=1-2i.
(2)當(dāng)z=1+2i時(shí),|w|=|zi+m|=|(1+2i)i+m|=|-2+i+m|=
(m-2)2+1
≥1,
當(dāng)z=1-2i時(shí),|w|=|zi+m|=|(1-2i)i+m|=|2+i+m|=
(m+2)2+1
≥1,
綜上可得:|w|≥1.
點(diǎn)評(píng):熟練掌握復(fù)數(shù)模的定義、互為共軛復(fù)數(shù)的意義及復(fù)數(shù)相等的定義是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)一模)設(shè)f(x)是定義在R上的函數(shù),對(duì)x∈R都有f(-x)=f(x),f(x)•f(x+2)=10,且當(dāng)x∈[-2,0]時(shí),f(x)=(
1
2
)x-1
,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)一模)已知lgx+lgy=1,則
5
x
+
2
y
的最小值是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)一模)拋物線的焦點(diǎn)為橢圓
x2
5
+
y2
4
=1
的右焦點(diǎn),頂點(diǎn)在橢圓中心,則拋物線方程為
y2=4x
y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)一模)定義變換T將平面內(nèi)的點(diǎn)P(x,y)(x≥0,y≥0)變換到平面內(nèi)的點(diǎn)Q(
x
,
y
)

若曲線C0
x
4
+
y
2
=1(x≥0,y≥0)
經(jīng)變換T后得到曲線C1,曲線C1經(jīng)變換T后得到曲線C2…,依此類推,曲線Cn-1經(jīng)變換T后得到曲線Cn,當(dāng)n∈N*時(shí),記曲線Cn與x、y軸正半軸的交點(diǎn)為An(an,0)和Bn(0,bn).某同學(xué)研究后認(rèn)為曲線Cn具有如下性質(zhì):
①對(duì)任意的n∈N*,曲線Cn都關(guān)于原點(diǎn)對(duì)稱;
②對(duì)任意的n∈N*,曲線Cn恒過點(diǎn)(0,2);
③對(duì)任意的n∈N*,曲線Cn均在矩形OAnDnBn(含邊界)的內(nèi)部,其中Dn的坐標(biāo)為Dn(an,bn);
④記矩形OAnDnBn的面積為Sn,則
lim
n→∞
Sn=1

其中所有正確結(jié)論的序號(hào)是
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)一模)已知遞增的等差數(shù)列{an}的首項(xiàng)a1=1,且a1、a2、a4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{cn}對(duì)任意n∈N*,都有
c1
2
+
c2
22
+…+
cn
2n
=an+1
成立,求c1+c2+…+c2012的值.
(3)若bn=
an+1
an
(n∈N*),求證:數(shù)列{bn}中的任意一項(xiàng)總可以表示成其他兩項(xiàng)之積.

查看答案和解析>>

同步練習(xí)冊(cè)答案