課外研究題:將一塊圓心角為,半徑為20厘米的扇形鐵片裁成一塊矩形,請你設(shè)計裁法,使裁得矩形的面積最大?并說明理由.
教學建議:這是一個研究性學習內(nèi)容,可讓學生在課外兩人一組合作完成,寫成研究報告,在習題課上讓學生交流研究結(jié)果,老師可適當進行點評。
參考答案:這是一個如何下料的問題,一般有如圖(1)、圖(2)的兩種裁法:即讓矩形一邊在扇形的一條半徑上,或讓矩形一邊與弦平行。從圖形的特點來看,涉及到線段的長度和角度,將這些量放置在三角形中,通過解三角形求出矩形的邊長,再計算出兩種方案所得矩形的最大面積,加以比較,就可以得出問題的結(jié)論.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
π |
3 |
| ||
6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
將一塊圓心角為,半徑為㎝的扇形鐵片裁成一塊矩形,有如圖(1)、(2)的兩種裁法:讓矩形一邊在扇形的一條半徑OA上,或讓矩形一邊與弦AB平行,請問哪 種裁法能得到最大面積的矩形?并求出這個最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com