已知函數(shù).

(1)若,當(dāng)時(shí),求的取值范圍;

(2)若定義在上奇函數(shù)滿(mǎn)足,且當(dāng)時(shí),,求上的反函數(shù);

(3)對(duì)于(2)中的,若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

 

【答案】

(1);(2);(3)

【解析】

試題分析:(1)這實(shí)質(zhì)上是解不等式,即,但是要注意對(duì)數(shù)的真數(shù)要為正,,;(2)上奇函數(shù)滿(mǎn)足,可很快求出,要求上的反函數(shù),必須求出上的解析式,根據(jù)的定義,在也應(yīng)該是一個(gè)分段函數(shù),故我們必須分別求出表達(dá)式,然后分別求出其反函數(shù)的表達(dá)式;(3)根據(jù)已知可知是周期為4的周期函數(shù),不等式上恒成立,求參數(shù)的取值范圍問(wèn)題,一般要研究函數(shù)的的單調(diào)性,利用單調(diào)性,可直接去掉函數(shù)符號(hào),由已知,我們可得出上是增函數(shù),在上是減函數(shù),又,而可無(wú)限趨近于,因此時(shí),題中不等式恒成立,就等價(jià)于,現(xiàn)在我們只要求出的范圍,而要求的范圍,只要按的正負(fù)分類(lèi)即可.

試題解析:(1)原不等式可化為    1分

所以,         1分

                 2分

(2)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014022806320426143997/SYS201402280635110863431625_DA.files/image012.png">是奇函數(shù),所以,得     1分

①當(dāng)時(shí),

             1分

此時(shí),所以      1分

②當(dāng)時(shí),,   1分

此時(shí),,所以   1分

綜上,上的反函數(shù)為        1分

(3)由題意,當(dāng)時(shí),,在上是增函數(shù),

當(dāng),在上也是增函數(shù),

所以上是增函數(shù),               2分

設(shè),則

,得

所以上是減函數(shù),       2分

的解析式知      1分

設(shè)

①當(dāng)時(shí),,因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014022806320426143997/SYS201402280635110863431625_DA.files/image059.png">,所以,即;

②當(dāng)時(shí),,滿(mǎn)足題意;

③當(dāng)時(shí),,因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014022806320426143997/SYS201402280635110863431625_DA.files/image066.png">,所以,即

綜上,實(shí)數(shù)的取值范圍為                3分

考點(diǎn):(1)對(duì)數(shù)不等式;(2)分段函數(shù)的反函數(shù);(3)不等式恒成立問(wèn)題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分12分)已知函數(shù)

(1)若,試確定函數(shù)的單調(diào)區(qū)間;(2)若,且對(duì)于任意,恒成立,試確定實(shí)數(shù)的取值范圍;(3)設(shè)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆寧夏高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分12分)已知函數(shù),

(1)若,求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省岳陽(yáng)市高三第一次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分13分)已知函數(shù)

(1)若的極值點(diǎn),求實(shí)數(shù)的值;

(2)若上為增函數(shù),求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省華中師大一附中高三上學(xué)期期中檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)。

(1)若,求函數(shù)的值;

(2)求函數(shù)的值域。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:吉林省10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

已知函數(shù)

(1)若從集合中任取一個(gè)元素,從集合中任取一個(gè)元素,求方程有兩個(gè)不相等實(shí)根的概率;

(2)若是從區(qū)間中任取的一個(gè)數(shù),是從區(qū)間中任取的一個(gè)數(shù),求方程沒(méi)有實(shí)根的概率.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案