已知甲盒內(nèi)有大小相同的1個紅球和3個黑球, 乙盒內(nèi)有大小相同的2個紅球和4個黑球,現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球.
(Ⅰ)求取出的4個球均為黑球的概率;
(Ⅱ)求取出的4個球中恰有1個紅球的概率;
(Ⅲ)設(shè)為取出的4個球中紅球的個數(shù),求的分布列和數(shù)學(xué)期望.
(Ⅰ) .(Ⅱ) .(Ⅲ)的分布列為:0 1 2 3
的數(shù)學(xué)期望.
解析試題分析:(Ⅰ)設(shè)“從甲盒內(nèi)取出的2個球均為黑球”為事件,
“從乙盒內(nèi)取出的2個球均為黑球”為事件.
由于事件相互獨立,且,. 2分
故取出的4個球均為黑球的概率為. 4分
(Ⅱ) 設(shè)“從甲盒內(nèi)取出的2個球均為黑球;從乙盒內(nèi)取出的2個球中,1個是紅球,1個是黑球”為事件,“從甲盒內(nèi)取出的2個球中,1個是紅球,1個是黑球;從乙盒內(nèi)取出的2個球均為黑球”為事件.則
,. 6分
由于事件互斥,故取出的4個球中恰有1個紅球的概率為
. 8分
(Ⅲ)可能的取值為.
由(Ⅰ),(Ⅱ)得,, .
從而.
的分布列為:0 1 2 3
10分
的數(shù)學(xué)期望. 12分
考點:本題考查了隨機(jī)變量的概率、分布列及期望
點評:本題考查了隨機(jī)事件的概率及隨機(jī)變量的分布列、期望的綜合運用,考查了學(xué)生的計算能力及解決實際問題的能力,掌握求分布列的步驟及期望公式是解決此類問題的關(guān)鍵
科目:高中數(shù)學(xué) 來源: 題型:解答題
哈爾濱市第一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為。
| 優(yōu)秀 | 非優(yōu)秀 | 合計 |
甲班 | 10 | | |
乙班 | | 30 | |
合計 | | | 110 |
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
從編號為1,2,3,4,5的五個形狀大小相同的球中,任取2個球,求:(1)取到的這2個球編號之和為5的概率;(2)取到的這2個球編號之和為奇數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲、乙兩人獨立地破譯1個密碼, 他們能譯出密碼的概率分別為和, 求:
(1)甲、乙兩人至少有一個人破譯出密碼的概率;
(2)兩人都沒有破譯出密碼的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某校設(shè)計了一個實驗考查方案:考生從道備選題中一次性隨機(jī)抽取道題,按照題目要求獨立完成全部實驗操作.規(guī)定:至少正確完成其中道題的便可通過.已知道備選題中考生甲有道題能正確完成,道題不能完成;考生乙每題正確完成的概率都是,且每題正確完成與否互不影響.
(1)求甲、乙兩考生正確完成題數(shù)的概率分布列,并計算其數(shù)學(xué)期望;
(2)請分析比較甲、乙兩考生的實驗操作能力.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一個袋中裝有大小相同的黑球和白球共9個,從中任取3個球,記隨機(jī)變量為取出3球中白球的個數(shù),已知.
(Ⅰ)求袋中白球的個數(shù);
(Ⅱ)求隨機(jī)變量的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了參加貴州省高中籃球比賽,某中學(xué)決定從四個籃球較強(qiáng)的班級的籃球隊員中選出人組成男子籃球隊,代表該地區(qū)參賽,四個籃球較強(qiáng)的班級籃球隊員人數(shù)如下表:
班級 | 高三()班 | 高三()班 | 高二()班 | 高二()班 |
人數(shù) | 12 | 6 | 9 | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
甲,乙,丙三位學(xué)生獨立地解同一道題,甲做對的概率為,乙,丙做對的概率分別為, (>),且三位學(xué)生是否做對相互獨立.記為這三位學(xué)生中做對該題的人數(shù),其分布列為:
0 | 1 | 2 | 3 | |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com