【題目】已知平面直角坐標(biāo)系內(nèi)兩定點,及動點,的兩邊所在直線的斜率之積為.

(1)求動點的軌跡的方程;

(2)設(shè)軸上的一點,若(1)中軌跡上存在兩點使得,求以為直徑的圓面積的取值范圍.

【答案】(1);(2)

【解析】分析:(1)由已知,列出方程,即可求解點的軌跡的方程;

(2)設(shè)點的坐標(biāo)為,當(dāng)直線斜率不存在時,可得,當(dāng)直線斜率存在時,設(shè)直線的方程為,聯(lián)立方程組,求解,由此列出不等式組,進(jìn)而求得,又由為長軸端點時,可求得的坐標(biāo),求得的值,即可得到結(jié)論.

詳解:(1)由已知,即,

所以,又三點構(gòu)成三角形,得

所以點的軌跡的方程為.

(2)設(shè)點的坐標(biāo)為,

當(dāng)直線斜率不存在時,可得分別是短軸的兩端點,得到,

當(dāng)直線斜率存在時,設(shè)直線的方程為,,,

則由①,

聯(lián)立,得,

,整理得.

由韋達(dá)定理得,②

由①②,消去,

,解得,

又因為為長軸端點時,可求得,此時,

綜上,,又因為以為直徑的圓面積

所以的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)若的負(fù)整數(shù)解有且只有兩個,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京101中學(xué)校園內(nèi)有一個“少年湖”,湖的兩側(cè)有一個音樂教室和一個圖書館,如圖,若設(shè)音樂教室在A處,圖書館在B處,為測量A,B兩地之間的距離,某同學(xué)選定了與A,B不共線的C處,構(gòu)成△ABC,以下是測量的數(shù)據(jù)的不同方案:①測量∠A,AC,BC;②測量∠A,B,BC;③測量∠C,AC,BC;④測量∠A,C,B. 其中一定能唯一確定A,B兩地之間的距離的所有方案的序號是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機(jī)構(gòu)對高三學(xué)生的記憶力和判斷力進(jìn)行統(tǒng)計分析,得下表數(shù)據(jù):

6

8

10

12

2

3

5

6

(1)請在圖中畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.

相關(guān)公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中, 橢圓的中心在坐標(biāo)原點,其右焦點為,且點 在橢圓上.

(1)求橢圓的方程;

(2)設(shè)橢圓的左、右頂點分別為是橢圓上異于的任意一點,直線交橢圓于另一點,直線交直線點, 求證:三點在同一條直線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“克拉茨猜想”又稱“猜想”,是德國數(shù)學(xué)家洛薩克拉茨在1950年世界數(shù)學(xué)家大會上公布的一個猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘3加1,不斷重復(fù)這樣的運算,經(jīng)過有限步后,最終都能夠得到1.己知正整數(shù)經(jīng)過6次運算后得到1,則的值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,為棱的中點,為棱上一點,

(1)確定的位置,使得平面 平面,并說明理由;

(2)設(shè)二面角的正切值為,,為線段上一點,且與平面所成角的正弦值為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①函數(shù)是奇函數(shù);

②將函數(shù)的圖像向左平移個單位長度,得到函數(shù)的圖像;

③若是第一象限角且,則;

是函數(shù)的圖像的一條對稱軸;

⑤函數(shù)的圖像關(guān)于點中心對稱。

其中,正確的命題序號是______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象與軸相切,且切點在軸的正半軸上.

1)求曲線直線軸圍成圖形的面積;

2若函數(shù)上的極小值不大于的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案