精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)是定義在R上的奇函數,當x≥0時,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若對于任意x∈R,都有f(x﹣2)≤f(x),則實數a的取值范圍是(
A.[﹣ ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ ]

【答案】D
【解析】解:∵當x≥0時,f(x)=|x﹣a2|+|x﹣2a2|﹣3a2
∴當0<x≤a2時,f(x)=a2﹣x+2a2﹣x﹣3a2=﹣2x;
當a2<x≤2a2時,f(x)=x﹣a2+2a2﹣x﹣3a2=﹣2a2;
當x>2a2時,f(x)=x﹣a2+x﹣2a2﹣3a2=2x﹣6a2
畫出其圖象如下:

由于函數f(x)是定義在R上的奇函數,即可畫出x<0時的圖象,與x>0時的圖象關于原點對稱.
x∈R,f(x+2)≥f(x),f(x﹣2)≤f(x),
∴6a2≤2,
解得a∈[﹣ , ].
故選:D.
【考點精析】根據題目的已知條件,利用函數奇偶性的性質的相關知識可以得到問題的答案,需要掌握在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=﹣x3+ax2+1,(a∈R).
(1)若f(x)圖象上橫坐標為1的點處存在垂直于y軸的切線,求a的值;
(2)若f(x)在區(qū)間(﹣1,2)內有兩個不同的極值點,求a取值范圍;
(3)當a=1時,是否存在實數m,使得函數g(x)=x4﹣5x3+(2﹣m)x2+1的圖象于函數f(x)的圖象恰有三個不同的交點,若存在,試求出實數m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)= 的值域是(
A.R
B.[﹣8,1]
C.[﹣9,+∞)
D.[﹣9,1]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知整數對按如圖規(guī)律排成,照此規(guī)律,則第68個數對是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線的參數方程為為參數),以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,直線與圓交于, 兩點.

(1)求圓的直角坐標方程及弦的長;

(2)動點在圓上(不與 重合),試求的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2017高考特別強調了要增加對數學文化的考查,為此某校高三年級特命制了一套與數學文化有關的專題訓練卷(文、理科試卷滿分均為100分),并對整個高三年級的學生進行了測試.現從這些學生中隨機抽取了50名學生的成績,按照成績?yōu)?/span> ,…, 分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學生的成績均不低于50分).

(1)求頻率分布直方圖中的的值,并估計所抽取的50名學生成績的平均數、中位數(同一組中的數據用該組區(qū)間的中點值代表);

(2)若高三年級共有2000名學生,試估計高三學生中這次測試成績不低于70分的人數;

(3)若在樣本中,利用分層抽樣的方法從成績不低于70分的三組學生中抽取6人,再從這6人中隨機抽取3人參加這次考試的考后分析會,試求兩組中至少有1人被抽到的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線的參數方程為為參數),以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,直線與圓交于, 兩點.

(1)求圓的直角坐標方程及弦的長;

(2)動點在圓上(不與, 重合),試求的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在三棱柱中,為正方形,為菱形,.

(Ⅰ)求證:平面平面;

(Ⅱ)若中點,是二面角的平面角,求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,平面平面,底面為梯形, ,且均為正三角形, 的重心.

(1)求證: 平面

(2)求平面與平面所成銳二面角的正切值.

查看答案和解析>>

同步練習冊答案