【題目】如圖,在正方體中,是的中點(diǎn),則異面直線與所成的角的余弦值是( )
A.B.C.D.
【答案】A
【解析】
(法一)連接,則即為異面直線與所成的角,解三角形即可;
(法二)分別以、、為軸、軸和軸,建立如圖空間直角坐標(biāo)系.設(shè)正方體的棱長(zhǎng)為2,可得、、、各點(diǎn)的坐標(biāo),從而得出、的坐標(biāo),利用空間向量的夾角公式算出、的夾角余弦之值,即可得到異面直線與所成的角的余弦值.
解:(法一)連接,
由題意,,則即為異面直線與所成的角,
設(shè)正方體的棱長(zhǎng)為2,則,則,
在中,;
(法二)分別以、、為軸、軸和軸,建立空間直角坐標(biāo)系如圖,
設(shè)正方體的棱長(zhǎng)為2,得,2,,,0,,,2,,,2,,
,,,,0,,
因此,得到,
,且,
,
異面直線與所成的角是銳角或直角,
面直線與所成的角的余弦值是,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2022年冬奧會(huì),北京市組織中學(xué)生開展冰雪運(yùn)動(dòng)的培訓(xùn)活動(dòng),并在培訓(xùn)結(jié)束后對(duì)學(xué)生進(jìn)行了考核.記表示學(xué)生的考核成績(jī),并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動(dòng)的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績(jī),并作成如下莖葉圖:
(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請(qǐng)根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核優(yōu)秀的概率;
(Ⅱ)從圖中考核成績(jī)滿足的學(xué)生中任取3人,設(shè)表示這3人中成績(jī)滿足的人數(shù),求的分布列和數(shù)學(xué)期望;
(Ⅲ)根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時(shí)培訓(xùn)有效.請(qǐng)根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動(dòng)是否有效,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高三年級(jí)學(xué)生為了慶祝教師節(jié),同學(xué)們?yōu)槔蠋熤谱髁艘淮笈环N規(guī)格的手工藝品,這種工藝品有兩項(xiàng)技術(shù)指標(biāo)需要檢測(cè),設(shè)各項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響,若項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為,按質(zhì)量檢驗(yàn)規(guī)定:兩項(xiàng)技術(shù)指標(biāo)都達(dá)標(biāo)的工藝品為合格品.
(1)求一個(gè)工藝品經(jīng)過檢測(cè)至少一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率;
(2)任意依次抽取該工藝品4個(gè),設(shè)表示其中合格品的個(gè)數(shù),求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,由一塊扇形空地,其中,米,計(jì)劃在此扇形空地區(qū)域?yàn)閷W(xué)生建燈光籃球運(yùn)動(dòng)場(chǎng),區(qū)域內(nèi)安裝一批照明燈,點(diǎn)、選在線段上(點(diǎn)、分別不與點(diǎn)、重合),且.
(1)若點(diǎn)在距離點(diǎn)米處,求點(diǎn)、之間的距離;
(2)為了使運(yùn)動(dòng)場(chǎng)地區(qū)域最大化,要求面積盡可能的小,記,請(qǐng)用表示的面積,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為“中學(xué)數(shù)學(xué)聯(lián)賽”選拔人才,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:分?jǐn)?shù)不小于本次考試成績(jī)中位數(shù)的具有復(fù)賽資格,某校有900名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間內(nèi),其頻率分布直方圖如圖.
(1)求獲得復(fù)賽資格應(yīng)劃定的最低分?jǐn)?shù)線;
(2)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機(jī)抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間與各抽取多少人?
(3)從(2)抽取的7人中,選出4人參加全市座談交流,設(shè)表示得分在中參加全市座談交流的人數(shù),學(xué)校打算給這4人一定的物質(zhì)獎(jiǎng)勵(lì),若該生分?jǐn)?shù)在給予500元獎(jiǎng)勵(lì),若該生分?jǐn)?shù)在給予800元獎(jiǎng)勵(lì),用Y表示學(xué)校發(fā)的獎(jiǎng)金數(shù)額,求Y的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期為,將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再向下平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖像.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在銳角中,角的對(duì)邊分別為,若,,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①,②復(fù)平面上表示的點(diǎn)在直線上,③.這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,求出滿足條件的復(fù)數(shù),以及.已知復(fù)數(shù),,______.若,求復(fù)數(shù),以及.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某課題小組共10人,已知該小組外出參加交流活動(dòng)次數(shù)為1,2,3的人數(shù)分別為3,3, 4,現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會(huì).
(1)記“選出2人外出參加交流活動(dòng)次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;
(2)設(shè)X為選出2人參加交流活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校計(jì)劃舉辦“國(guó)學(xué)”系列講座.由于條件限制,按男、女生比例采取分層抽樣的方法,從某班選出10人參加活動(dòng),在活動(dòng)前,對(duì)所選的10名同學(xué)進(jìn)行了國(guó)學(xué)素養(yǎng)測(cè)試,這10名同學(xué)的性別和測(cè)試成績(jī)(百分制)的莖葉圖如圖所示.
(1)分別計(jì)算這10名同學(xué)中,男女生測(cè)試的平均成績(jī);
(2)若這10名同學(xué)中,男生和女生的國(guó)學(xué)素養(yǎng)測(cè)試成績(jī)的標(biāo)準(zhǔn)差分別為S1,S2,試比較S1與S2的大。ú槐赜(jì)算,只需直接寫出結(jié)果);
(3)規(guī)定成績(jī)大于等于75分為優(yōu)良,從這10名同學(xué)中隨機(jī)選取一男一女兩名同學(xué),求這兩名同學(xué)的國(guó)學(xué)素養(yǎng)測(cè)試成績(jī)均為優(yōu)良的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com