如圖,四棱錐E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F為CE上的點(diǎn),且BF平面AC E.

(1)求證:AEBE;
(2)求三棱錐D—AEC的體積;
(3)求二面角A—CD—E的余弦值.

(1)空間中的線線垂直的證明,一般主要是通過線面垂直的性質(zhì)定理來加以證明。
(2)
(3)

解析試題分析:解:(1)ABCD是矩形,BCAB,平面EAB平面ABCD,平面EAB平面ABCD=AB,BC平面ABCD,BC平面EAB,
EA平面EAB,BCEA ,BF平面ACE,EA平面ACE,BF EA, BC BF=B,BC平面EBC,BF平面EBC,EA平面EBC ,BE平面EBC, EA BE。 
(2) EA BE,AB=
 ,設(shè)O為AB的中點(diǎn),連結(jié)EO,
∵AE=EB=2,EOAB,平面EAB平面ABCD,EO平面ABCD,即EO為三棱錐E—ADC的高,且EO=,。
(3)以O(shè)為原點(diǎn),分別以O(shè)E、OB所在直線為,如圖建立空間直角坐標(biāo)系,

,
 ,由(2)知是平面ACD的一個法向量,設(shè)平面ECD的法向量為,則,即,令,則,所以,設(shè)二面角A—CD—E的平面角的大小為,由圖得
所以二面角A—CD—E的余弦值為。
考點(diǎn):二面角的平面角,線面垂直
點(diǎn)評:解決的關(guān)鍵是熟練的根據(jù)線面垂直的性質(zhì)定理,以及建立直角坐標(biāo)系來求解二面角的 平面角是常用 方法之一,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖(1),在等腰梯形CDEF中,CB、DA是梯形的高,,,現(xiàn)將梯形沿CB、DA折起,使EF//AB且,得一簡單組合體如圖(2)所示,已知分別為的中點(diǎn).

圖(1)                      圖(2)
(Ⅰ)求證:平面;
(Ⅱ)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖, 三棱柱ABC—A1B1C1的側(cè)棱AA1⊥底面ABC, ∠ACB =" 90°," E是棱CC1上動點(diǎn), F是AB中點(diǎn), AC =" 1," BC =" 2," AA1 =" 4."

(1) 當(dāng)E是棱CC1中點(diǎn)時(shí), 求證: CF∥平面AEB1;
(2) 在棱CC1上是否存在點(diǎn)E, 使得二面角A—EB1—B
的余弦值是, 若存在, 求CE的長, 若不存在,
請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是均以為斜邊的等腰直角三角形,,分別為,,的中點(diǎn),的中點(diǎn),且平面.

(1)證明:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐的底面為一直角梯形,其中,底面的中點(diǎn).

(Ⅰ)求證://平面;
(Ⅱ)若平面,求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面,
,,的中點(diǎn).

(Ⅰ)求和平面所成的角的大。
(Ⅱ)證明平面;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四邊形ABCD為平行四邊形,BC⊥平面ABE,AEBE,BE = BC = 1,AE = ,M為線段AB的中點(diǎn),N為線段DE的中點(diǎn),P為線段AE的中點(diǎn)。

(1)求證:MNEA
(2)求四棱錐MADNP的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn),且AB=AD,BC=DC.

(1)求證:平面EFGH;
(2)求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)在如圖的多面體中,⊥平面,,,,的中點(diǎn).

(Ⅰ) 求證:平面;
(Ⅱ) 求證:;
(Ⅲ) 求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案