已知:數(shù)列{an}的前n項(xiàng)和Sn=n2+2n(n∈N*)
(1)求:通項(xiàng)
(2)求和: 

(1) an=" 2n+1;(2)" .

解析試題分析:(1)利用,即可求出結(jié)果;
(2)由于,所以求可以利用裂項(xiàng)相消法求和即可 .
試題解析:解:(Ⅰ)當(dāng)n≥2時(shí),an=Sn-Sn-1=2n+1,              2分
n=1時(shí),a1=S1=3適合上式               3分
∴an=2n+1,    n∈N*,                  4分
(Ⅱ)      6分
∴原式
==                8分
考點(diǎn):1.數(shù)列的遞推公式;2. 裂項(xiàng)相消法求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知數(shù)列的首項(xiàng)為,且,則這個(gè)數(shù)列的通項(xiàng)公式為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和,數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式,并說明是否為等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知正項(xiàng)數(shù)列滿足:
(1)求通項(xiàng);
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前n項(xiàng)和為,且滿足,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)為數(shù)列{}的前n項(xiàng)和,求;
(3)設(shè),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且2.
(1)求數(shù)列的通項(xiàng)公式;
(2)若求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項(xiàng)和為,且的等差中項(xiàng),等差數(shù)列滿足 
(1)求數(shù)列的通項(xiàng)公式
(2)設(shè)=,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,數(shù)列滿足.
(Ⅰ)證明數(shù)列是等差數(shù)列并求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

數(shù)列中,,前n項(xiàng)和為Sn,則S2009=______________。

查看答案和解析>>

同步練習(xí)冊(cè)答案