【題目】已知函數(shù)的定義域為,部分對應值如下表,又知的導函數(shù)的圖象如下圖所示:

-1

0

4

5

1

2

2

1

則下列關于的命題:

為函數(shù)的一個極大值點;

②函數(shù)的極小值點為2;

③函數(shù)上是減函數(shù);

④如果當時,的最大值是2,那么的最大值為4;

⑤當時,函數(shù)有4個零點.

其中正確命題的序號是__________

【答案】②③

【解析】分析:由題意結合導函數(shù)與原函數(shù)的關系逐一考查所給的命題即可求得結果.

詳解:由導數(shù)圖象可知,當﹣1<x<0或2<x<4時,f′(x)0,函數(shù)單調(diào)遞增,

當0<x<2或4<x<5,f′(x)<0,函數(shù)單調(diào)遞減,

當x=0和x=4,函數(shù)取得極大值f(0)=2,f(4)=2,

當x=2時,函數(shù)取得極小值f(2),所以錯誤;②③正確;

因為在當x=0和x=4,函數(shù)取得極大值f(0)=2,f(4)=2,

要使當x∈[﹣1,t]函數(shù)f(x)的最大值是2,

則2≤t≤5,所以t的最大值為5,所以不正確;

由f(x)=a知,因為極小值f(2)未知,所以無法判斷函數(shù)y=f(x)﹣a有幾個零點,所以不正確.

故答案為:②.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=sinωx(ω>0),將f(x)的圖象向左平移 個單位從長度后,所得圖象與原函數(shù)的圖象重合,則ω的最小值為(
A.
B.3
C.6
D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用數(shù)學歸納法證明,則當時,等式左邊應在的基礎上加上( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人各射擊一次,擊中目標的概率分別是.假設兩人射擊是否擊中目標,相互之間沒有影響;每次射擊是否擊中目標,相互之間沒有影響.

(1)求甲射擊4次,至少1次未擊中目標的概率;

(2)求兩人各射擊4次,甲恰好擊中目標2次且乙恰好擊中目標3次的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知變量之間的線性回歸方程為,且變量之間的一組相關數(shù)據(jù)如表所示,則下列說法錯誤的是( 。

x

6

8

10

12

y

6

m

3

2

A. 變量之間呈現(xiàn)負相關關系

B. 的值等于5

C. 變量之間的相關系數(shù)

D. 由表格數(shù)據(jù)知,該回歸直線必過點(9,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系,已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.

(1)求直線l的普通方程和曲線的直角坐標方程;

(2)已知點的極坐標為,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了鼓勵市民節(jié)約用電,實行“階梯式”電價,某邊遠山區(qū)每戶居民月用電量劃分為三檔:月用電量不超過150度,按0.6元/度收費,超過150度但不超過250度的部分每度加價0.1元,超過250度的部分每度再加價0.3元收費.

(1)求該邊遠山區(qū)某戶居民月用電費用(單位:元)關于月用電量(單位:度)的函數(shù)解析式;

(2)已知該邊遠山區(qū)貧困戶的月用電量(單位:度)與該戶長期居住的人口數(shù)(單位:人)間近似地滿足線性相關關系:的值精確到整數(shù)),其數(shù)據(jù)如表:

14

15

17

18

161

168

191

200

現(xiàn)政府為減輕貧困家庭的經(jīng)濟負擔,計劃對該邊遠山區(qū)的貧困家庭進行一定的經(jīng)濟補償,給出兩種補償方案供選擇:一是根據(jù)該家庭人數(shù),每人每戶月補償6元;二是根據(jù)用電量每人每月補償為用電量)元,請根據(jù)家庭人數(shù)分析,一個貧困家庭選擇哪種補償方式可以獲得更多的補償?

附:回歸直線中斜率和截距的最小二乘法估計公式分別為:

,.

參考數(shù)據(jù):,,,,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等差數(shù)列{an}中,2a9a12+13,a37,其前n項和為Sn

1)求數(shù)列{an}的通項公式;

2)求數(shù)列{}的前n項和Tn,并證明Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)若恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案