【題目】已知函數(shù).
(1)當時,求的單調(diào)遞增區(qū)間;
(2)證明:當時,有兩個零點;
(3)若,函數(shù)在處取得最小值,證明:.
【答案】(1)(2)見證明;(3)見證明;
【解析】
(1)對函數(shù)f(x)求導,解即可得到函數(shù)的單調(diào)增區(qū)間;(2)根據(jù)函數(shù)單調(diào)性和函數(shù)的極值以及圖像的趨勢即可得到證明;(3)對函數(shù)g(x)求導,求出單調(diào)性,由單調(diào)性得到函數(shù)取最小值時的x值即,代入f(x)即可得到證明.
(1)解:.
當時,由,得或.
故的單調(diào)遞增區(qū)間為.
(2)證明:函數(shù)f(x)定義域為,時,,
當時,在上單調(diào)遞增,在上單調(diào)遞減.
則.
且當),
所以有兩個零點.
(3)證明:,.
設,因為,所以在上為增函數(shù).
又,.
所以.當時,;當時,.
所以函數(shù)在處取得最小值且,
.
因為,所以.
科目:高中數(shù)學 來源: 題型:
【題目】正整數(shù)的所有約數(shù)之和用表示,(比如).試答下列各問:
(1)證明:如果和互質(zhì),那么;
(2)當是的約數(shù)(),且.試證是質(zhì)數(shù).其次,如果是正整數(shù),是質(zhì)數(shù),試證也是質(zhì)數(shù);
(3)設(為正整數(shù),為奇數(shù)),且.試證存在質(zhì)數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|3x﹣2|﹣|x﹣3|.
(Ⅰ)求不等式f(x)≥4的解集;
(Ⅱ)求函數(shù)g(x)=f(x)+f(﹣x)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】遼寧號航母紀念章從2012年10月5日起開始上市,通過市場調(diào)查,得到該紀念章每1枚的市場價y(單位:元)與上市時間x(單位:天)的數(shù)據(jù)如下:
上市時間x天 | 8 | 10 | 32 |
市場價y元 | 82 | 60 | 82 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個恰當?shù)暮瘮?shù)描述遼寧號航母紀念章的市場價y與上市時間x的變化關系并說明理由:①;②;③.
(2)利用你選取的函數(shù),求遼寧號航母紀念章市場價最低時的上市天數(shù)及最低的價格.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系 中,曲線 的參數(shù)方程為 (為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線 的極坐標方程為 .
(1)求直線和曲線的普通方程;
(2)已知點,且直線和曲線交于兩點,求 的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知球是正三棱錐(底面為正三角形,頂點在底面的射影為底面中心)的外接球,,,點在線段上,且,過點作球的截面,則所得截面圓面積的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),其中為常數(shù)且.新定義:若滿足,但,則稱為的回旋點.
(1)當時,分別求和的值;
(2)當時,求函數(shù)的解析式,并求出回旋點;
(3)證明函數(shù)在有且僅有兩個回旋點,并求出回旋點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com