【題目】泰興機械廠生產(chǎn)一種木材旋切機械,已知生產(chǎn)總利潤c元與生產(chǎn)量x臺之間的關系式為c(x)=-2x2+7 000x+600.
(1)求產(chǎn)量為1 000臺的總利潤與平均利潤;
(2)求產(chǎn)量由1 000臺提高到1 500臺時,總利潤的平均改變量;
(3)求c′(1 000)與c′(1 500),并說明它們的實際意義.
【答案】(1)5 000.6(元);(2)2 000(元);(3)見解析.
【解析】
(1)將x=1000代入函數(shù)可得總利潤,總利潤除以總數(shù)1000可得平均利潤;
(2)計算即可得解;
(3)求導得c′(x),再分別計算c′(1 000)和c′(1 500),利用導數(shù)代表瞬時變化率可知為實際意義為生產(chǎn)一臺多獲利的錢數(shù).
(1)產(chǎn)量為1 000臺時的總利潤為c(1 000)=-2×1 0002+7 000×1 000+600=5 000 600(元),平均利潤為=5 000.6(元).
(2)當產(chǎn)量由1 000臺提高到1 500臺時,總利潤的平均改變量為==2 000(元).
(3)∵c′(x)=(-2x2+7 000x+600)′=-4x+7 000,∴c′(1 000)=-4×1 000+7 000=3 000(元),
c′(1 500)=-4×1 500+7 000=1 000(元),
它們指的是當產(chǎn)量為1 000臺時,生產(chǎn)一臺機械可多獲利3 000元;.
而當產(chǎn)量為1 500臺時,生產(chǎn)一臺機械可多獲利1 000元.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面四邊形ABCD中,已知∠A= ,∠B= ,AB=6,在AB邊上取點E,使得BE=1,連接EC,ED.若∠CED= ,EC= .
(Ⅰ)求sin∠BCE的值;
(Ⅱ)求CD的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某海警基地碼頭O的正東方向40海里處有海礁界碑M,過點M且與OM成(即北偏西)的直線l在在此處的一段為領海與公海的分界線(如圖所示),在碼頭O北偏東方向領海海面上的A處發(fā)現(xiàn)有一艘疑似走私船(可疑船)停留. 基地指揮部決定在測定可疑船的行駛方向后,海警巡邏艇從O處即刻出發(fā),按計算確定方向以可疑船速度的2倍航速前去攔截,假定巡邏艇和可疑船在攔截過程中均未改變航向航速,將在P處恰好截獲可疑船.
(1)如果O和A相距6海里,求可疑船被截獲處的點P的軌跡;
(2)若要確保在領海內(nèi)捕獲可疑船(即P不能在公海上).則、之間的最大距離是多少海里?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直四棱柱ABCD﹣A1B1C1D1的底面ABCD是直角梯形,其中AB⊥AD,AB=2AD=2AA1=4,CD=1.
(Ⅰ)證明:BD1⊥平面A1C1D;
(Ⅱ)求BD1與平面A1BC1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設雙曲線C: (a>0,b>0)的左、右焦點分別為F1,F2,|F1F2|=2c,過F2作x軸的垂線與雙曲線在第一象限的交點為A,已知Q,|F2Q|>|F2A|,點P是雙曲線C右支上的動點,且|PF1|+|AQ|>|F1F2|恒成立,則雙曲線的離心率的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品x件的總成本c(x)=120+,總成本的單位是元.
(1)當x從200變到220時,總成本c關于產(chǎn)量x的平均變化率是多少?它代表什么實際意義?
(2)求c′(200),并解釋它代表什么實際意義.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點的雙曲線的右焦點為,右頂點為.
(1)求雙曲線的方程;
(2)若直線與雙曲線恒有兩個不同的交點和,且(其中為坐標原點),求實數(shù)取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在矩形ABCD中,,沿對角線將折起,使點C移到 點,且C點在平面ABD的射影O恰在AB上.
(1)求證:平面ACD;
求直線AB與平面D所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com