【題目】下列結(jié)論正確的是( )

函數(shù)關(guān)系是一種確定性關(guān)系;

相關(guān)關(guān)系是一種非確定性關(guān)系;

回歸分析是對(duì)具有函數(shù)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種方法;

回歸分析是對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法.

A. ①② B. ①②③ C. ①②④ D. ①②③④

【答案】C

【解析】根據(jù)函數(shù)關(guān)系、相關(guān)關(guān)系、回歸分析的概念可知選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,射影定理可表示為ab·cosCc·cosB.其中a,b,c分別為角AB,C的對(duì)邊,類比上述定理.寫出對(duì)空間四面體性質(zhì)的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間中,下列命題錯(cuò)誤的是 (  )

A. 一條直線與兩個(gè)平行平面中的一個(gè)相交則必與另一個(gè)相交

B. 一個(gè)平面與兩個(gè)平行平面相交,交線平行

C. 平行于同一平面的兩個(gè)平面平行

D. 平行于同一直線的兩個(gè)平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知圓在極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)).若直

與圓相交于不同的兩點(diǎn).

)寫出圓的直角坐標(biāo)方程,并求圓心的坐標(biāo)與半徑;

)若弦長,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校某研究性學(xué)習(xí)小組在對(duì)學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時(shí)間(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)時(shí),圖象是二次函數(shù)圖象的一部分,其中頂點(diǎn),過點(diǎn);當(dāng)時(shí),圖象是線段,其中.根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時(shí),學(xué)習(xí)效果最佳.

1)試求的函數(shù)關(guān)系式;

2)教師在什么時(shí)段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明a,b,c中至少有一個(gè)大于0”,下列假設(shè)正確的是()

A. 假設(shè)a,bc都小于0 B. 假設(shè)a,b,c都大于0

C. 假設(shè)ab,c中都不大于0 D. 假設(shè)a,b,c中至多有一個(gè)大于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

(1)若方程有三個(gè)解試求實(shí)數(shù)的取值范圍;

(2)是否存在實(shí)數(shù),),使函數(shù)的定義域與值域均為?若存在,求出所有的區(qū)間,若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,,點(diǎn)點(diǎn).

(1)如圖1,角平分線點(diǎn)連接.求證:;

(2)如圖2,連接,點(diǎn)點(diǎn)關(guān)于直線對(duì)稱,連接.

①依據(jù)題意補(bǔ)全圖形;

等式表示線段、之間的數(shù)量關(guān)系,并以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面是一段演繹推理:

大前提:如果直線平行于平面,則這條直線平行于平面內(nèi)的所有直線;

小前提:已知直線b∥平面α,直線a平面α;

結(jié)論:所以直線b∥直線a.在這個(gè)推理中(  )

A. 大前提正確,結(jié)論錯(cuò)誤 B. 大前提錯(cuò)誤,結(jié)論錯(cuò)誤

C. 大、小前提正確,只有結(jié)論錯(cuò)誤 D. 小前提與結(jié)論都是錯(cuò)誤的

查看答案和解析>>

同步練習(xí)冊(cè)答案