【題目】求下列各式極限:

1

2;

3;

4;

5;

6

【答案】1;(2;(3)見解析;(4;(5)見解析;(6.

【解析】

1)在分式的分子和分母中同時除以,再利用常見數(shù)列的極限可求得所求極限的值;

2)利用等比數(shù)列求和公式化簡分式的分子和分母,然后在分式的分子和分母中同時除以,再利用常見數(shù)列的極限可求得所求極限的值;

3)化簡所求極限為,然后分、三種情況討論,利用常用數(shù)列的極限可求得所求極限的值;

4)在分式的分子和分母中同時除以,再利用常見數(shù)列的極限可求得所求極限的值;

5)在所求的分式的分子和分母中同時除以,然后分、、三種情況討論,利用常見數(shù)列的極限可求得所求極限的值;

6)利用等比數(shù)列求和公式化簡分母,然后在分式的分子和分母中同時除以,利用常見數(shù)列的極限可求得所求極限的值.

1)原式;

2,

原式

3.

當(dāng)時,原極限不存在;

當(dāng)時,原式;

當(dāng)時,原式.

綜上所述,當(dāng)時,原極限不存在;當(dāng)時,原式;當(dāng)時,原式

4,原式

5,則.

當(dāng)時,,原式;

當(dāng)時,,原式

當(dāng)時,,原式.

綜上所述,當(dāng)時,原式;當(dāng)時,原式;當(dāng)時,原式;

6,,則,

所以,原式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

按照某學(xué)者的理論,假設(shè)一個人生產(chǎn)某產(chǎn)品單件成本為元,如果他賣出該產(chǎn)品的單價為元,則他的滿意度為;如果他買進(jìn)該產(chǎn)品的單價為元,則他的滿意度為.如果一個人對兩種交易(賣出或買進(jìn))的滿意度分別為,則他對這兩種交易的綜合滿意度為.

現(xiàn)假設(shè)甲生產(chǎn)AB兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)AB兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品AB的單價分別為元和元,甲買進(jìn)A與賣出B的綜合滿意度為,乙賣出A與買進(jìn)B的綜合滿意度為

(1)關(guān)于、的表達(dá)式;當(dāng)時,求證:=;

(2)設(shè),當(dāng)、分別為多少時,甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少?(3)(2)中最大的綜合滿意度為,試問能否適當(dāng)選取、的值,使得同時成立,但等號不同時成立?試說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnxsinx,記fx)的導(dǎo)函數(shù)為f'x).

1)若hx)=axf'x)是(0,+∞)上的單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;

2)若x0,2π),試判斷函數(shù)fx)的極值點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1是某高架橋箱梁的橫截面,它由上部路面和下部支撐箱兩部分組成.如圖2,路面寬度,下部支撐箱CDEF為等腰梯形(),且.為了保證承重能力與穩(wěn)定性,需下部支撐箱的面積為,高度為2m,若路面AB側(cè)邊CFDE底部EF的造價分別為4a千元/m,5a千元/m6a千元/ma為正常數(shù)),

1)試用θ表示箱梁的總造價y(千元);

2)試確定cosθ的值,使總造價最低?并求最低總造價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實數(shù),整數(shù)

(1)證明:當(dāng)時,

(2)數(shù)列滿足, ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B、C是橢圓W上的三個點,O是坐標(biāo)原點.

(I)當(dāng)點BW的右頂點,且四邊形OABC為菱形時,求此菱形的面積.

(II)當(dāng)點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為實現(xiàn)國民經(jīng)濟新三步走的發(fā)展戰(zhàn)略目標(biāo),國家加大了扶貧攻堅的力度.某地區(qū)在2015 年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開始,全面實施精準(zhǔn)扶貧政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數(shù)占比(參加該項目戶數(shù)占 2019 年貧困戶總數(shù)的比)及該項目的脫貧率見下表:

實施項目

種植業(yè)

養(yǎng)殖業(yè)

工廠就業(yè)

服務(wù)業(yè)

參加用戶比

脫貧率

那么年的年脫貧率是實施精準(zhǔn)扶貧政策前的年均脫貧率的(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校組織的一次籃球定點投籃比賽中,兩人一對一比賽規(guī)則如下:若某人某次投籃命中,則由他繼續(xù)投籃,否則由對方接替投籃. 現(xiàn)由甲、乙兩人進(jìn)行一對一投籃比賽,甲和乙每次投籃命中的概率分別是.兩人共投籃3次,且第一次由甲開始投籃. 假設(shè)每人每次投籃命中與否均互不影響.3次投籃的人依次是甲、甲、乙的概率___________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,二面角α1β的平面角的大小為60°,A,B1上的兩個定點,且AB2Cα,Dβ,滿足AB與平面BCD所成的角為30°,且點A在平面BCD上的射影H在△BCD的內(nèi)部(包括邊界),則點H的軌跡的長度等于(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案