【題目】為實現(xiàn)國民經濟新“三步走”的發(fā)展戰(zhàn)略目標,國家加大了扶貧攻堅的力度.某地區(qū)在2015 年以前的年均脫貧率(脫離貧困的戶數(shù)占當年貧困戶總數(shù)的比)為.2015年開始,全面實施“精準扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數(shù)占比(參加該項目戶數(shù)占 2019 年貧困戶總數(shù)的比)及該項目的脫貧率見下表:
實施項目 | 種植業(yè) | 養(yǎng)殖業(yè) | 工廠就業(yè) | 服務業(yè) |
參加用戶比 | ||||
脫貧率 |
那么年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的( )
A.B.C.D.
科目:高中數(shù)學 來源: 題型:
【題目】
已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實數(shù),n為正整數(shù).
(Ⅰ)對任意實數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結論;
(Ⅲ)設0<a<b,Sn為數(shù)列{bn}的前n項和.是否存在實數(shù)λ,使得對任意正整數(shù)n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+2ax﹣lnx﹣1,a∈R.
(1)當a時,求f(x)的單調區(qū)間及極值;
(2)若a為整數(shù),且不等式f(x)≥x對任意x∈(0,+∞)恒成立,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的奇數(shù)項是首項為1的等差數(shù)列,偶數(shù)項是首項為2的等比數(shù)列.數(shù)列前項和為,且滿足
(1)求數(shù)列的通項公式;
(2)求數(shù)列前項和;
(3)在數(shù)列中,是否存在連續(xù)的三項,按原來的順序成等差數(shù)列?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù)有下述四個結論:
①是偶函數(shù);②的最大值為;
③在有個零點;④在區(qū)間單調遞增.
其中所有正確結論的編號是( )
A.①②B.①③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關要求,決定在全公司范圍內舉行一次乙肝普查,為此需要抽驗960人的血樣進行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.
方案①:將每個人的血分別化驗,這時需要驗960次.
方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結果呈陰性,這個人的血就只需檢驗一次;否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.
假設此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應相互獨立.
(1)設方案②中,某組個人中每個人的血化驗次數(shù)為,求的分布列;
(2)設,試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結果四舍五入保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓上一點關于原點的對稱點為,點, 的面積為,直線過上的點.
(1)求的方程;
(2)設為的短軸端點,直線過點交于,證明:四邊形的兩條對角線的交點在定直線上.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com