【題目】如圖,在四棱錐中,底面是矩形,面底面,且是邊長(zhǎng)為的等邊三角形, 上,且∥面BDM.

(1)求直線PC與平面BDM所成角的正弦值;

(2)求平面BDM與平面PAD所成銳二面角的大小.

【答案】(1);(2)

【解析】試題分析:

利用題意建立空間直角坐標(biāo)系,據(jù)此可得:

(1) 直線PC與平面BDM所成角的正弦值為

(2) 平面BDM與平面PAD所成銳二面角的大小為.

試題解析:

解:因?yàn)?/span>, 作AD邊上的高PO,

則由,由面面垂直的性質(zhì)定理,得,

是矩形,同理,知, ,故.

以AD中點(diǎn)O為坐標(biāo)原點(diǎn),OA所在直線為x軸,OP所在直線為z軸,AD的垂直平分線y軸,建立如圖所示的坐標(biāo)系,則

連結(jié)AC交BD于點(diǎn)N,由

所以,又N是AC的中點(diǎn),

所以M是PC的中點(diǎn),則,設(shè)面BDM的法向量為,

,

,得,

,解得,所以取.

(1)設(shè)PC與面BDM所成的角為,則,

所以直線PC與平面BDM所成角的正弦值為 .

(2)面PAD的法向量為向量,設(shè)面BDM與面PAD所成的銳二面角為

,故平面BDM與平面PAD所成銳二面角的大小為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線上的點(diǎn)到點(diǎn)的距離比它到直線的距離小2.

1)求曲線的方程;

(2)過點(diǎn)且斜率為的直線交曲線, 兩點(diǎn),若,當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在區(qū)間[﹣ ,π]上的函數(shù)y=f(x)的圖象關(guān)于直線x= 對(duì)稱,當(dāng)x≥ 時(shí),函數(shù)y=sinx.
(1)求f(﹣ ),f(﹣ )的值;
(2)求y=f(x)的表達(dá)式
(3)若關(guān)于x的方程f(x)=a有解,那么將方程在a取某一確定值時(shí)所求得的所有解的和記為Ma , 求Ma的所有可能取值及相應(yīng)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F分別為棱AB、AD的中點(diǎn).
(1)求證:EF平行平面CB1D1
(2)求證:平面CAA1C1⊥平面CB1D1
(3)求直線A1C與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正四棱錐P﹣ABCD中,側(cè)棱PA與底面ABCD所成的角的正切值為
(1)求側(cè)面PAD與底面ABCD所成的二面角的大;
(2)若E是PB的中點(diǎn),求異面直線PD與AE所成角的正切值;
(3)問在棱AD上是否存在一點(diǎn)F,使EF⊥側(cè)面PBC,若存在,試確定點(diǎn)F的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 過圓上任意一點(diǎn)軸引垂線垂足為(點(diǎn)可重合),點(diǎn)的中點(diǎn).

(1)求的軌跡方程;

(2)若點(diǎn)的軌跡方程為曲線,不過原點(diǎn)的直線與曲線交于、兩點(diǎn),滿足直線, , 的斜率依次成等比數(shù)列,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐,側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直,底面的菱形, 為棱上的動(dòng)點(diǎn),且.

(I)求證: 為直角三角形;

(II)試確定的值,使得二面角的平面角余弦值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若如圖為某直三棱柱(側(cè)棱與底面垂直)被削去一部分后的直觀圖與三視圖中的側(cè)視圖、俯視圖,則其正視圖的面積為 ,三棱錐D﹣BCE的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 (本小題滿分12分)

如圖, 在四面體ABOC中, , 且.

)設(shè)為的中點(diǎn), 證明: 在上存在一點(diǎn),使,并計(jì)算;

)求二面角的平面角的余弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案