【題目】某醫(yī)院治療白血病有甲、乙兩套方案,現(xiàn)就70名患者治療后復(fù)發(fā)的情況進(jìn)行了統(tǒng)計(jì),得到其等高條形圖如圖所示(其中采用甲、乙兩種治療方案的患者人數(shù)之比為).

(1)補(bǔ)充完整列聯(lián)表中的數(shù)據(jù),并判斷是否有的把握認(rèn)為甲、乙兩套治療方案對患者白血病復(fù)發(fā)有影響;

(2)從復(fù)發(fā)的患者中抽取3人進(jìn)行分析,求其中接受“乙方案”治療的人數(shù)的數(shù)學(xué)期望.

附:

,其中

【答案】(1)沒有;(2).

【解析】

1)根據(jù)題意,補(bǔ)充完整列聯(lián)表中的數(shù)據(jù),計(jì)算觀測值,對照數(shù)表得出結(jié)論;(2依題意知的可能取值,計(jì)算對應(yīng)的概率值,寫出分布列,求出數(shù)學(xué)期望值.

(1)

復(fù)發(fā)

未復(fù)發(fā)

總計(jì)

甲方案

20

30

50

乙方案

2

18

20

總計(jì)

22

48

70

由于

所以沒有的把握認(rèn)為甲、乙兩套治療方案對患者白血病復(fù)發(fā)有影響;

(2)接受“乙方案”治療的人數(shù).

;;

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;

(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線,動圓P與圓M相外切,且與直線l相切.設(shè)動圓圓心P的軌跡為E.

1)求E的方程;

2)若點(diǎn)ABE上的兩個動點(diǎn),O為坐標(biāo)原點(diǎn),且,求證:直線AB恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,且函數(shù)在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;

(2)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,點(diǎn)是線段上的動點(diǎn),則下列說法錯誤的是( )

A. 當(dāng)點(diǎn)移動至中點(diǎn)時,直線與平面所成角最大且為

B. 無論點(diǎn)上怎么移動,都有

C. 當(dāng)點(diǎn)移動至中點(diǎn)時,才有相交于一點(diǎn),記為點(diǎn),且

D. 無論點(diǎn)上怎么移動,異面直線所成角都不可能是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面與平面平行的充分條件可以是(

A.內(nèi)有無窮多條直線都與平行

B.直線,,且直線a不在內(nèi),也不在內(nèi)

C.直線,直線,且

D.內(nèi)的任何一條直線都與平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若方程有兩個不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案①:規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案②:規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量.現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為,,,,七組,整理得到如圖所示的頻率分布直方圖.

(1)隨機(jī)選取一天,估計(jì)這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;

(2)若騎手甲、乙選擇了日工資方案①,丙、丁選擇了日工資方案②.現(xiàn)從上述4名騎手中隨機(jī)選取2人,求至少有1名騎手選擇方案①的概率;

(3)若從人均日收入的角度考慮,請你利用所學(xué)的統(tǒng)計(jì)學(xué)知識為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,.

(1)當(dāng)時,解不等式;

(2)若函數(shù)在區(qū)間內(nèi)恰有一個零點(diǎn),求的取值范圍;

(3)設(shè),當(dāng)函數(shù)的定義域?yàn)?/span>時,值域?yàn)?/span>,求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案