【題目】已知函數(shù)為自然對數(shù)的底數(shù)),.

(1)當時,求函數(shù)的極小值;

(2)若當時,關于的方程有且只有一個實數(shù)解,求的取值范圍.

【答案】(1)0(2)

【解析】

(1)當時,, 令 ,可得,列表判斷兩邊的符號,根據(jù)極值的定義可得結果;(2)化簡,求得,,設,可得,討論的取值范圍,根據(jù)函數(shù)的單調性,結合零點存在定理即可篩選出符合題意的的取值范圍.

(1)當時,,,

列表如下:

1

單調遞減

極小值

單調遞增

所以.

(2)設,

,

,,

得, ,單調遞增,

單調遞增,,

①當,即時,時,單調遞增,

,故當時,關于的方程有且只有一個實數(shù)解,符合題意.

②當,即時,由(1)可知,

所以,又

,當時,,單調遞減,又

故當時,

內,關于的方程有一個實數(shù)解1.

時,,單調遞增,

,令,

,,故單調遞增,又

單調遞增,故,故

,由零點存在定理可知,,

故在內,關于的方程有一個實數(shù)解.

又在內,關于的方程有一個實數(shù)解1,不合題意.

綜上,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解高二年級學生某次數(shù)學考試成績的分布情況,從該年級的1120名學生中隨機抽取了100名學生的數(shù)學成績,發(fā)現(xiàn)都在內現(xiàn)將這100名學生的成績按照,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距與短軸長相等,長軸長為,設過右焦點F傾斜角為的直線交橢圓MA、B兩點.

(1)求橢圓M的方程;

(2)求證:

(3)設過右焦點F且與直線AB垂直的直線交橢圓MC、D,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且曲線在點處的切線與直線垂直.

(1)求函數(shù)的單調區(qū)間;

(2)求證:時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每個國家對退休年齡都有不一樣的規(guī)定,從2018年開始,我國關于延遲退休的話題一直在網(wǎng)上熱議,為了了解市民對延遲退休的態(tài)度,現(xiàn)從某地市民中隨機選取100人進行調查,調查情況如下表:

年齡段(單位:歲)

被調查的人數(shù)

贊成的人數(shù)

1)從贊成延遲退休的人中任選1人,此人年齡在的概率為,求出表格中的值;

2)若從年齡在的參與調查的市民中按照是否贊成延遲退休進行分層抽樣,從中抽取10人參與某項調查,然后再從這10人中隨機抽取4人參加座談會,記這4人中贊成延遲退休的人數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求的單調區(qū)間;

(2)若,,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,,.

1)求證:;

2)若二面角的大小為時,求的中線與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方體的棱長為,,,,分別是,,的中點,則過且與平行的平面截正方體所得截面的面積為______,和該截面所成角的正弦值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線與拋物線交于兩點,且.

(1)求的方程;

(2)試問:在軸的正半軸上是否存在一點,使得的外心在上?若存在,求的坐標;若不存在,請說明理由..

查看答案和解析>>

同步練習冊答案